Submission #495531

# Submission time Handle Problem Language Result Execution time Memory
495531 2021-12-19T09:28:34 Z AQ0212 Chessboard (IZhO18_chessboard) C++17
70 / 100
2000 ms 4164 KB
#include <iostream>
#include <algorithm>
#include <cmath>
#include <set>
#include <map>
#include <vector>
#include <string>
#include <sstream>
#include <cstring>
 
#define ll long long int
#define pb push_back
#define pf push_front
#define fi first
#define se second
#define all(x) x.begin(), x.end()
 
using namespace std;
 
ll inf2 = 3e18;
 
ll x1[ 100111 ], x2[ 100111 ];
ll y11[ 100111 ], y2[ 100111 ], ans = inf2;
vector < ll > divv;
map < ll , ll > mp;
 
ll white_first(ll sz, ll n, ll m){
	ll sqrs = n / sz;
	ll cnt_move = (sqrs & 1) ? ((((sqrs >> 1) * ((sqrs >> 1) + 1)) << 1) * (sz * sz)) : (sqrs >> 1) * (sqrs) * (sz * sz);
	// cout << "w: " << cnt_move << " sz: " << sz << "\n";
 
	for(int i = 1; i <= m; i ++){
		if(x1[ i ] == x2[ i ] && y11[ i ] == y2[ i ]){
			if(((x1[ i ] + sz - 1) / sz) & 1)
				if(((y11[ i ] + sz - 1) / sz) & 1)
					cnt_move ++;
				else
					cnt_move --;
			else
				if(((y11[ i ] + sz - 1) / sz) & 1)
					cnt_move --;
				else
					cnt_move ++;
			continue;
		}
		for(int j = 1, j2 = 1; j <= n; j += sz, j2 ++){
 
			if(j <= x1[ i ] && x2[ i ] <= (j2 * sz)){
				for(int k = 1, k2 = 1; k <= n; k += sz, k2 ++){
 
					if(k <= y11[ i ] && y2[ i ] <= (k2 * sz)){
						if(j2 & 1)
							if(k2 & 1)
								cnt_move += (x2[ i ] - x1[ i ] + 1) * (y2[ i ] - y11[ i ] + 1);
							else
								cnt_move -= (x2[ i ] - x1[ i ] + 1) * (y2[ i ] - y11[ i ] + 1);
						else
							if(k2 & 1)
								cnt_move -= (x2[ i ] - x1[ i ] + 1) * (y2[ i ] - y11[ i ] + 1);
							else
								cnt_move += (x2[ i ] - x1[ i ] + 1) * (y2[ i ] - y11[ i ] + 1);
						break;
					}else if(k <= y11[ i ] && y11[ i ] <= (k2 * sz) && (k2 * sz) <= y2[ i ]){
						if(j2 & 1)
							if(k2 & 1)
								cnt_move += (x2[ i ] - x1[ i ] + 1) * ((k2 * sz) - y11[ i ] + 1);
							else
								cnt_move -= (x2[ i ] - x1[ i ] + 1) * ((k2 * sz) - y11[ i ] + 1);
						else
							if(k2 & 1)
								cnt_move -= (x2[ i ] - x1[ i ] + 1) * ((k2 * sz) - y11[ i ] + 1);
							else
								cnt_move += (x2[ i ] - x1[ i ] + 1) * ((k2 * sz) - y11[ i ] + 1);
 
					}else if(y11[ i ] <= k && (k2 * sz) <= y2[ i ]){
						if(j2 & 1)
							if(k2 & 1)
								cnt_move += (x2[ i ] - x1[ i ] + 1) * ((k2 * sz) - k + 1);
							else
								cnt_move -= (x2[ i ] - x1[ i ] + 1) * ((k2 * sz) - k + 1);
						else
							if(k2 & 1)
								cnt_move -= (x2[ i ] - x1[ i ] + 1) * ((k2 * sz) - k + 1);
							else
								cnt_move += (x2[ i ] - x1[ i ] + 1) * ((k2 * sz) - k + 1);
 
					}else{
						if(j2 & 1)
							if(k2 & 1)
								cnt_move += (x2[ i ] - x1[ i ] + 1) * (y2[ i ] - k + 1);
							else
								cnt_move -= (x2[ i ] - x1[ i ] + 1) * (y2[ i ] - k + 1);
						else
							if(k2 & 1)
								cnt_move -= (x2[ i ] - x1[ i ] + 1) * (y2[ i ] - k + 1);
							else
								cnt_move += (x2[ i ] - x1[ i ] + 1) * (y2[ i ] - k + 1);
						break;
					}
				}
 
			}else if(j <= x1[ i ] && x1[ i ] <= (j2 * sz) && (j2 * sz) <= x2[ i ]){
				for(int k = 1, k2 = 1; k <= n; k += sz, k2 ++){
 
					if(k <= y11[ i ] && y2[ i ] <= (k2 * sz)){
						if(j2 & 1)
							if(k2 & 1)
								cnt_move += ((j2 * sz) - x1[ i ] + 1) * (y2[ i ] - y11[ i ] + 1);
							else
								cnt_move -= ((j2 * sz) - x1[ i ] + 1) * (y2[ i ] - y11[ i ] + 1);
						else
							if(k2 & 1)
								cnt_move -= ((j2 * sz) - x1[ i ] + 1) * (y2[ i ] - y11[ i ] + 1);
							else
								cnt_move += ((j2 * sz) - x1[ i ] + 1) * (y2[ i ] - y11[ i ] + 1);
						break;
					}else if(k <= y11[ i ] && y11[ i ] <= (k2 * sz) && (k2 * sz) <= y2[ i ]){
						if(j2 & 1)
							if(k2 & 1)
								cnt_move += ((j2 * sz) - x1[ i ] + 1) * ((k2 * sz) - y11[ i ] + 1);
							else
								cnt_move -= ((j2 * sz) - x1[ i ] + 1) * ((k2 * sz) - y11[ i ] + 1);
						else
							if(k2 & 1)
								cnt_move -= ((j2 * sz) - x1[ i ] + 1) * ((k2 * sz) - y11[ i ] + 1);
							else
								cnt_move += ((j2 * sz) - x1[ i ] + 1) * ((k2 * sz) - y11[ i ] + 1);
 
					}else if(y11[ i ] <= k && (k2 * sz) <= y2[ i ]){
						if(j2 & 1)
							if(k2 & 1)
								cnt_move += ((j2 * sz) - x1[ i ] + 1) * ((k2 * sz) - k + 1);
							else
								cnt_move -= ((j2 * sz) - x1[ i ] + 1) * ((k2 * sz) - k + 1);
						else
							if(k2 & 1)
								cnt_move -= ((j2 * sz) - x1[ i ] + 1) * ((k2 * sz) - k + 1);
							else
								cnt_move += ((j2 * sz) - x1[ i ] + 1) * ((k2 * sz) - k + 1);
 
					}else{
						if(j2 & 1)
							if(k2 & 1)
								cnt_move += ((j2 * sz) - x1[ i ] + 1) * (y2[ i ] - k + 1);
							else
								cnt_move -= ((j2 * sz) - x1[ i ] + 1) * (y2[ i ] - k + 1);
						else
							if(k2 & 1)
								cnt_move -= ((j2 * sz) - x1[ i ] + 1) * (y2[ i ] - k + 1);
							else
								cnt_move += ((j2 * sz) - x1[ i ] + 1) * (y2[ i ] - k + 1);
						break;
					}
				}
 
			}else if(x1[ i ] <= j && (j2 * sz) <= x2[ i ]){
				for(int k = 1, k2 = 1; k <= n; k += sz, k2 ++){
 
					if(k <= y11[ i ] && y2[ i ] <= (k2 * sz)){
						if(j2 & 1)
							if(k2 & 1)
								cnt_move += ((j2 * sz) - j + 1) * (y2[ i ] - y11[ i ] + 1);
							else
								cnt_move -= ((j2 * sz) - j + 1) * (y2[ i ] - y11[ i ] + 1);
						else
							if(k2 & 1)
								cnt_move -= ((j2 * sz) - j + 1) * (y2[ i ] - y11[ i ] + 1);
							else
								cnt_move += ((j2 * sz) - j + 1) * (y2[ i ] - y11[ i ] + 1);
						break;
					}else if(k <= y11[ i ] && y11[ i ] <= (k2 * sz) && (k2 * sz) <= y2[ i ]){
						if(j2 & 1)
							if(k2 & 1)
								cnt_move += ((j2 * sz) - j + 1) * ((k2 * sz) - y11[ i ] + 1);
							else
								cnt_move -= ((j2 * sz) - j + 1) * ((k2 * sz) - y11[ i ] + 1);
						else
							if(k2 & 1)
								cnt_move -= ((j2 * sz) - j + 1) * ((k2 * sz) - y11[ i ] + 1);
							else
								cnt_move += ((j2 * sz) - j + 1) * ((k2 * sz) - y11[ i ] + 1);
 
					}else if(y11[ i ] <= k && (k2 * sz) <= y2[ i ]){
						if(j2 & 1)
							if(k2 & 1)
								cnt_move += ((j2 * sz) - j + 1) * ((k2 * sz) - k + 1);
							else
								cnt_move -= ((j2 * sz) - j + 1) * ((k2 * sz) - k + 1);
						else
							if(k2 & 1)
								cnt_move -= ((j2 * sz) - j + 1) * ((k2 * sz) - k + 1);
							else
								cnt_move += ((j2 * sz) - j + 1) * ((k2 * sz) - k + 1);
 
					}else{
						if(j2 & 1)
							if(k2 & 1)
								cnt_move += ((j2 * sz) - j + 1) * (y2[ i ] - k + 1);
							else
								cnt_move -= ((j2 * sz) - j + 1) * (y2[ i ] - k + 1);
						else
							if(k2 & 1)
								cnt_move -= ((j2 * sz) - j + 1) * (y2[ i ] - k + 1);
							else
								cnt_move += ((j2 * sz) - j + 1) * (y2[ i ] - k + 1);
						break;
					}
				}
 
			}else{
				for(int k = 1, k2 = 1; k <= n; k += sz, k2 ++){
 
					if(k <= y11[ i ] && y2[ i ] <= (k2 * sz)){
						if(j2 & 1)
							if(k2 & 1)
								cnt_move += (x2[ i ] - j + 1) * (y2[ i ] - y11[ i ] + 1);
							else
								cnt_move -= (x2[ i ] - j + 1) * (y2[ i ] - y11[ i ] + 1);
						else
							if(k2 & 1)
								cnt_move -= (x2[ i ] - j + 1) * (y2[ i ] - y11[ i ] + 1);
							else
								cnt_move += (x2[ i ] - j + 1) * (y2[ i ] - y11[ i ] + 1);
						break;
					}else if(k <= y11[ i ] && y11[ i ] <= (k2 * sz) && (k2 * sz) <= y2[ i ]){
						if(j2 & 1)
							if(k2 & 1)
								cnt_move += (x2[ i ] - j + 1) * ((k2 * sz) - y11[ i ] + 1);
							else
								cnt_move -= (x2[ i ] - j + 1) * ((k2 * sz) - y11[ i ] + 1);
						else
							if(k2 & 1)
								cnt_move -= (x2[ i ] - j + 1) * ((k2 * sz) - y11[ i ] + 1);
							else
								cnt_move += (x2[ i ] - j + 1) * ((k2 * sz) - y11[ i ] + 1);
 
					}else if(y11[ i ] <= k && (k2 * sz) <= y2[ i ]){
						if(j2 & 1)
							if(k2 & 1)
								cnt_move += (x2[ i ] - j + 1) * ((k2 * sz) - k + 1);
							else
								cnt_move -= (x2[ i ] - j + 1) * ((k2 * sz) - k + 1);
						else
							if(k2 & 1)
								cnt_move -= (x2[ i ] - j + 1) * ((k2 * sz) - k + 1);
							else
								cnt_move += (x2[ i ] - j + 1) * ((k2 * sz) - k + 1);
 
					}else{
						if(j2 & 1)
							if(k2 & 1)
								cnt_move += (x2[ i ] - j + 1) * (y2[ i ] - k + 1);
							else
								cnt_move -= (x2[ i ] - j + 1) * (y2[ i ] - k + 1);
						else
							if(k2 & 1)
								cnt_move -= (x2[ i ] - j + 1) * (y2[ i ] - k + 1);
							else
								cnt_move += (x2[ i ] - j + 1) * (y2[ i ] - k + 1);
						break;
					}
				}
 
			}
		}
	}
 
	return cnt_move;
}
 
int main(){
	ll n, m;
 
	cin >> n >> m;
 
	for(int i = 1; i <= m; i ++){
		cin >> x1[ i ] >> y11[ i ] >> x2[ i ] >> y2[ i ];
	}
 
	divv.pb(1);
	for(int i = 2; i <= ((ll)ceil(sqrt(n))); i ++){
		if(n % i == 0 && !mp[ i ] && i != n){
			divv.pb(i);
			mp[ i ] ++;
			if(!mp[ n / i ]){
				divv.pb(n / i);
				mp[ n / i ] ++;
			}
		}
	}
 
	// sort(all(divv));
 
	for(int i = 0; i < divv.size(); i ++){
		ll white = white_first(divv[ i ], n, m);
		
		ans = min(ans, min((n * n) - white, white));
		// cout << white << " " << (n * n) - white << "\n";
	}
 
	cout << ans;
}

Compilation message

chessboard.cpp: In function 'int main()':
chessboard.cpp:294:19: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<long long int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  294 |  for(int i = 0; i < divv.size(); i ++){
      |                 ~~^~~~~~~~~~~~~
# Verdict Execution time Memory Grader output
1 Correct 1 ms 204 KB Output is correct
2 Correct 0 ms 204 KB Output is correct
3 Correct 0 ms 204 KB Output is correct
4 Correct 1 ms 204 KB Output is correct
5 Correct 1 ms 204 KB Output is correct
6 Correct 0 ms 204 KB Output is correct
7 Correct 0 ms 204 KB Output is correct
8 Correct 0 ms 204 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 65 ms 2156 KB Output is correct
2 Correct 21 ms 824 KB Output is correct
3 Correct 41 ms 1468 KB Output is correct
4 Correct 43 ms 2388 KB Output is correct
5 Correct 58 ms 2704 KB Output is correct
6 Correct 42 ms 2084 KB Output is correct
7 Correct 10 ms 672 KB Output is correct
8 Correct 36 ms 2100 KB Output is correct
9 Correct 91 ms 3784 KB Output is correct
10 Correct 56 ms 2620 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 204 KB Output is correct
2 Correct 1 ms 204 KB Output is correct
3 Correct 1 ms 204 KB Output is correct
4 Correct 1 ms 332 KB Output is correct
5 Correct 1 ms 332 KB Output is correct
6 Correct 0 ms 204 KB Output is correct
7 Correct 1 ms 332 KB Output is correct
8 Correct 1 ms 332 KB Output is correct
9 Correct 1 ms 332 KB Output is correct
10 Correct 0 ms 204 KB Output is correct
11 Correct 1 ms 332 KB Output is correct
12 Correct 1 ms 332 KB Output is correct
13 Correct 1 ms 332 KB Output is correct
14 Correct 1 ms 332 KB Output is correct
15 Correct 1 ms 332 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 204 KB Output is correct
2 Correct 1 ms 204 KB Output is correct
3 Correct 1 ms 204 KB Output is correct
4 Correct 1 ms 332 KB Output is correct
5 Correct 1 ms 332 KB Output is correct
6 Correct 0 ms 204 KB Output is correct
7 Correct 1 ms 332 KB Output is correct
8 Correct 1 ms 332 KB Output is correct
9 Correct 1 ms 332 KB Output is correct
10 Correct 0 ms 204 KB Output is correct
11 Correct 1 ms 332 KB Output is correct
12 Correct 1 ms 332 KB Output is correct
13 Correct 1 ms 332 KB Output is correct
14 Correct 1 ms 332 KB Output is correct
15 Correct 1 ms 332 KB Output is correct
16 Correct 23 ms 1144 KB Output is correct
17 Correct 70 ms 2832 KB Output is correct
18 Correct 83 ms 3396 KB Output is correct
19 Correct 109 ms 2976 KB Output is correct
20 Correct 143 ms 3308 KB Output is correct
21 Correct 83 ms 2724 KB Output is correct
22 Correct 1 ms 332 KB Output is correct
23 Correct 38 ms 1544 KB Output is correct
24 Correct 73 ms 3008 KB Output is correct
25 Correct 8 ms 460 KB Output is correct
26 Correct 53 ms 2048 KB Output is correct
27 Correct 62 ms 2344 KB Output is correct
28 Correct 77 ms 3296 KB Output is correct
29 Correct 26 ms 1296 KB Output is correct
30 Correct 3 ms 332 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 65 ms 2156 KB Output is correct
2 Correct 21 ms 824 KB Output is correct
3 Correct 41 ms 1468 KB Output is correct
4 Correct 43 ms 2388 KB Output is correct
5 Correct 58 ms 2704 KB Output is correct
6 Correct 42 ms 2084 KB Output is correct
7 Correct 10 ms 672 KB Output is correct
8 Correct 36 ms 2100 KB Output is correct
9 Correct 91 ms 3784 KB Output is correct
10 Correct 56 ms 2620 KB Output is correct
11 Correct 1 ms 204 KB Output is correct
12 Correct 1 ms 204 KB Output is correct
13 Correct 1 ms 204 KB Output is correct
14 Correct 1 ms 332 KB Output is correct
15 Correct 1 ms 332 KB Output is correct
16 Correct 0 ms 204 KB Output is correct
17 Correct 1 ms 332 KB Output is correct
18 Correct 1 ms 332 KB Output is correct
19 Correct 1 ms 332 KB Output is correct
20 Correct 0 ms 204 KB Output is correct
21 Correct 1 ms 332 KB Output is correct
22 Correct 1 ms 332 KB Output is correct
23 Correct 1 ms 332 KB Output is correct
24 Correct 1 ms 332 KB Output is correct
25 Correct 1 ms 332 KB Output is correct
26 Correct 23 ms 1144 KB Output is correct
27 Correct 70 ms 2832 KB Output is correct
28 Correct 83 ms 3396 KB Output is correct
29 Correct 109 ms 2976 KB Output is correct
30 Correct 143 ms 3308 KB Output is correct
31 Correct 83 ms 2724 KB Output is correct
32 Correct 1 ms 332 KB Output is correct
33 Correct 38 ms 1544 KB Output is correct
34 Correct 73 ms 3008 KB Output is correct
35 Correct 8 ms 460 KB Output is correct
36 Correct 53 ms 2048 KB Output is correct
37 Correct 62 ms 2344 KB Output is correct
38 Correct 77 ms 3296 KB Output is correct
39 Correct 26 ms 1296 KB Output is correct
40 Correct 3 ms 332 KB Output is correct
41 Correct 129 ms 3572 KB Output is correct
42 Correct 106 ms 3984 KB Output is correct
43 Correct 102 ms 3632 KB Output is correct
44 Correct 99 ms 3872 KB Output is correct
45 Correct 103 ms 4056 KB Output is correct
46 Correct 149 ms 3836 KB Output is correct
47 Correct 89 ms 3636 KB Output is correct
48 Correct 99 ms 3740 KB Output is correct
49 Correct 90 ms 3652 KB Output is correct
50 Correct 309 ms 3888 KB Output is correct
51 Correct 327 ms 4080 KB Output is correct
52 Correct 295 ms 3780 KB Output is correct
53 Correct 362 ms 4064 KB Output is correct
54 Correct 288 ms 3840 KB Output is correct
55 Correct 337 ms 4164 KB Output is correct
56 Correct 287 ms 3756 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 204 KB Output is correct
2 Correct 0 ms 204 KB Output is correct
3 Correct 0 ms 204 KB Output is correct
4 Correct 1 ms 204 KB Output is correct
5 Correct 1 ms 204 KB Output is correct
6 Correct 0 ms 204 KB Output is correct
7 Correct 0 ms 204 KB Output is correct
8 Correct 0 ms 204 KB Output is correct
9 Correct 65 ms 2156 KB Output is correct
10 Correct 21 ms 824 KB Output is correct
11 Correct 41 ms 1468 KB Output is correct
12 Correct 43 ms 2388 KB Output is correct
13 Correct 58 ms 2704 KB Output is correct
14 Correct 42 ms 2084 KB Output is correct
15 Correct 10 ms 672 KB Output is correct
16 Correct 36 ms 2100 KB Output is correct
17 Correct 91 ms 3784 KB Output is correct
18 Correct 56 ms 2620 KB Output is correct
19 Correct 1 ms 204 KB Output is correct
20 Correct 1 ms 204 KB Output is correct
21 Correct 1 ms 204 KB Output is correct
22 Correct 1 ms 332 KB Output is correct
23 Correct 1 ms 332 KB Output is correct
24 Correct 0 ms 204 KB Output is correct
25 Correct 1 ms 332 KB Output is correct
26 Correct 1 ms 332 KB Output is correct
27 Correct 1 ms 332 KB Output is correct
28 Correct 0 ms 204 KB Output is correct
29 Correct 1 ms 332 KB Output is correct
30 Correct 1 ms 332 KB Output is correct
31 Correct 1 ms 332 KB Output is correct
32 Correct 1 ms 332 KB Output is correct
33 Correct 1 ms 332 KB Output is correct
34 Correct 23 ms 1144 KB Output is correct
35 Correct 70 ms 2832 KB Output is correct
36 Correct 83 ms 3396 KB Output is correct
37 Correct 109 ms 2976 KB Output is correct
38 Correct 143 ms 3308 KB Output is correct
39 Correct 83 ms 2724 KB Output is correct
40 Correct 1 ms 332 KB Output is correct
41 Correct 38 ms 1544 KB Output is correct
42 Correct 73 ms 3008 KB Output is correct
43 Correct 8 ms 460 KB Output is correct
44 Correct 53 ms 2048 KB Output is correct
45 Correct 62 ms 2344 KB Output is correct
46 Correct 77 ms 3296 KB Output is correct
47 Correct 26 ms 1296 KB Output is correct
48 Correct 3 ms 332 KB Output is correct
49 Correct 129 ms 3572 KB Output is correct
50 Correct 106 ms 3984 KB Output is correct
51 Correct 102 ms 3632 KB Output is correct
52 Correct 99 ms 3872 KB Output is correct
53 Correct 103 ms 4056 KB Output is correct
54 Correct 149 ms 3836 KB Output is correct
55 Correct 89 ms 3636 KB Output is correct
56 Correct 99 ms 3740 KB Output is correct
57 Correct 90 ms 3652 KB Output is correct
58 Correct 309 ms 3888 KB Output is correct
59 Correct 327 ms 4080 KB Output is correct
60 Correct 295 ms 3780 KB Output is correct
61 Correct 362 ms 4064 KB Output is correct
62 Correct 288 ms 3840 KB Output is correct
63 Correct 337 ms 4164 KB Output is correct
64 Correct 287 ms 3756 KB Output is correct
65 Correct 1 ms 204 KB Output is correct
66 Correct 0 ms 204 KB Output is correct
67 Execution timed out 2082 ms 3960 KB Time limit exceeded
68 Halted 0 ms 0 KB -