# |
Submission time |
Handle |
Problem |
Language |
Result |
Execution time |
Memory |
484793 |
2021-11-05T13:32:11 Z |
jalsol |
Horses (IOI15_horses) |
C++17 |
|
392 ms |
156000 KB |
#include "horses.h"
#ifdef LOCAL
#include "local.h"
#else
#include <bits/stdc++.h>
#define debug(...)
#define DB(...)
#endif
using namespace std;
static const bool __initialization = []() {
cin.tie(nullptr)->sync_with_stdio(false);
cout << setprecision(12) << fixed;
return true;
}();
using ll = long long;
using ld = long double;
#define all(x) x.begin(), x.end()
#define rall(x) x.rbegin(), x.rend()
#define For(i, l, r) for (int i = (l); i <= (r); ++i)
#define Ford(i, r, l) for (int i = (r); i >= (l); --i)
#define Rep(i, n) For (i, 0, (n) - 1)
#define Repd(i, n) Ford (i, (n) - 1, 0)
#define Fe(...) for (auto __VA_ARGS__)
template <class C> inline int isz(const C& c) { return static_cast<int>(c.size()); }
template <class T> inline bool chmin(T& a, const T& b) { return (a > b) ? a = b, true : false; }
template <class T> inline bool chmax(T& a, const T& b) { return (a < b) ? a = b, true : false; }
constexpr ld eps = 1e-9;
constexpr int inf = 1e9;
constexpr ll linf = 1e18;
// =============================================================================
constexpr int maxn = 5e5 + 5;
// rewriting mint
struct mint {
int v;
static constexpr int mod = 1e9 + 7;
mint() : v(0) {}
mint(ll _v) : v(_v % mod) { v += mod * (v < 0); }
friend mint power(mint a, ll b) {
mint ret = 1;
while (b) {
if (b & 1) ret *= a;
b >>= 1;
a *= a;
}
return ret;
}
// TODO: add more operator
mint& operator*=(const mint& o) {
return *this = mint(1LL * v * o.v);
}
mint& operator/=(const mint& o) {
return *this *= power(o, mod - 2);
}
friend mint operator*(const mint& a, const mint& b) {
return mint(a) *= b;
}
friend mint operator/(const mint& a, const mint& b) {
return mint(a) /= b;
}
friend bool operator==(const mint& a, const mint& b) {
return a.v == b.v;
}
};
void __print_single(const mint& a) {
cerr << a.v;
}
int n;
int X[maxn];
int Y[maxn];
ld plog[maxn];
mint pprod[maxn];
namespace segtree {
struct Node {
ld log;
mint prod;
Node() : log(0.0), prod(1) {}
Node(ld x, const mint& y) : log(x), prod(y) {}
bool operator<(const Node& o) const {
return log < o.log;
}
Node& operator+=(const Node& o) {
log += o.log;
prod *= o.prod;
return *this;
}
};
void __print_single(const Node& a) {
cerr << "{ " << a.log << ", " << a.prod.v << " }";
}
#define m ((l + r) / 2)
#define lc (2 * i + 1)
#define rc (2 * i + 2)
Node tree[maxn << 2];
Node lazy[maxn << 2];
void build(int i, int l, int r) {
if (l == r) {
tree[i] = {plog[l] + log(Y[l]), pprod[l] * Y[l]};
return;
}
build(lc, l, m);
build(rc, m + 1, r);
tree[i] = max(tree[lc], tree[rc]);
}
void push(int i, int l, int r) {
if (lazy[i].prod == 1) return;
tree[i] += lazy[i];
if (l < r) {
lazy[lc] += lazy[i];
lazy[rc] += lazy[i];
}
lazy[i] = Node();
}
void update(int i, int l, int r, int u, int v, const mint& mul, ld lg) {
push(i, l, r);
if (v < l || r < u) return;
if (u <= l && r <= v) {
lazy[i] = {lg, mul};
push(i, l, r);
return;
}
update(lc, l, m, u, v, mul, lg);
update(rc, m + 1, r, u, v, mul, lg);
tree[i] = max(tree[lc], tree[rc]);
}
#undef m
#undef lc
#undef rc
} // namespace segtree
using namespace segtree;
int init(int _N, int _X[], int _Y[]) {
n = _N;
mempcpy(X + 1, _X, n * sizeof(int));
mempcpy(Y + 1, _Y, n * sizeof(int));
plog[1] = log(X[1]);
pprod[1] = X[1];
For (i, 2, n) {
plog[i] = plog[i - 1] + log(X[i]);
pprod[i] = pprod[i - 1] * X[i];
}
build(0, 1, n);
return tree[0].prod.v;
}
int updateX(int pos, int val) {
++pos;
mint mul = mint(val) / mint(X[pos]);
ld lg = -log(X[pos]) + log(val);
X[pos] = val;
update(0, 1, n, pos, n, mul, lg);
return tree[0].prod.v;
}
int updateY(int pos, int val) {
++pos;
mint mul = mint(val) / mint(Y[pos]);
ld lg = -log(Y[pos]) + log(val);
Y[pos] = val;
update(0, 1, n, pos, pos, mul, lg);
return tree[0].prod.v;
}
// selling everything at one single day I suppose?
// if there's an answer of selling at both days,
// then keeping instead of selling at the first day,
// keeping the number of horses grow then sell at the second day
// will profit more because of the property of exponential functions
// ig?
// but the values will get very, very large, very quickly...
// if it passes the first subtask, then the logic could be correct
// holy shit why did I forget logarithm...
// no wonder people solved this with ease
Compilation message
horses.cpp: In constructor 'mint::mint(ll)':
horses.cpp:48:24: warning: conversion from 'll' {aka 'long long int'} to 'int' may change value [-Wconversion]
48 | mint(ll _v) : v(_v % mod) { v += mod * (v < 0); }
| ~~~^~~~~
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
69 ms |
127428 KB |
Output is correct |
2 |
Correct |
75 ms |
127536 KB |
Output is correct |
3 |
Correct |
69 ms |
127428 KB |
Output is correct |
4 |
Correct |
70 ms |
127592 KB |
Output is correct |
5 |
Correct |
73 ms |
127428 KB |
Output is correct |
6 |
Correct |
73 ms |
127484 KB |
Output is correct |
7 |
Correct |
73 ms |
127416 KB |
Output is correct |
8 |
Correct |
69 ms |
127412 KB |
Output is correct |
9 |
Correct |
75 ms |
127428 KB |
Output is correct |
10 |
Correct |
72 ms |
127412 KB |
Output is correct |
11 |
Correct |
72 ms |
127428 KB |
Output is correct |
12 |
Correct |
75 ms |
127436 KB |
Output is correct |
13 |
Correct |
79 ms |
127428 KB |
Output is correct |
14 |
Correct |
74 ms |
127456 KB |
Output is correct |
15 |
Correct |
74 ms |
127556 KB |
Output is correct |
16 |
Correct |
72 ms |
127428 KB |
Output is correct |
17 |
Correct |
70 ms |
127576 KB |
Output is correct |
18 |
Correct |
74 ms |
127516 KB |
Output is correct |
19 |
Correct |
74 ms |
127464 KB |
Output is correct |
20 |
Correct |
75 ms |
127504 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
76 ms |
127412 KB |
Output is correct |
2 |
Correct |
73 ms |
127432 KB |
Output is correct |
3 |
Correct |
81 ms |
127508 KB |
Output is correct |
4 |
Correct |
71 ms |
127436 KB |
Output is correct |
5 |
Correct |
68 ms |
127480 KB |
Output is correct |
6 |
Correct |
72 ms |
127532 KB |
Output is correct |
7 |
Correct |
71 ms |
127428 KB |
Output is correct |
8 |
Correct |
70 ms |
127492 KB |
Output is correct |
9 |
Correct |
76 ms |
127428 KB |
Output is correct |
10 |
Correct |
73 ms |
127428 KB |
Output is correct |
11 |
Correct |
69 ms |
127428 KB |
Output is correct |
12 |
Correct |
73 ms |
127528 KB |
Output is correct |
13 |
Correct |
68 ms |
127428 KB |
Output is correct |
14 |
Correct |
72 ms |
127468 KB |
Output is correct |
15 |
Correct |
68 ms |
127472 KB |
Output is correct |
16 |
Correct |
73 ms |
127428 KB |
Output is correct |
17 |
Correct |
73 ms |
127556 KB |
Output is correct |
18 |
Correct |
75 ms |
127428 KB |
Output is correct |
19 |
Correct |
73 ms |
127528 KB |
Output is correct |
20 |
Correct |
70 ms |
127428 KB |
Output is correct |
21 |
Correct |
69 ms |
127524 KB |
Output is correct |
22 |
Correct |
68 ms |
127464 KB |
Output is correct |
23 |
Correct |
70 ms |
127536 KB |
Output is correct |
24 |
Correct |
76 ms |
127556 KB |
Output is correct |
25 |
Correct |
73 ms |
127512 KB |
Output is correct |
26 |
Correct |
71 ms |
127560 KB |
Output is correct |
27 |
Correct |
68 ms |
127556 KB |
Output is correct |
28 |
Correct |
70 ms |
127588 KB |
Output is correct |
29 |
Correct |
74 ms |
127568 KB |
Output is correct |
30 |
Correct |
71 ms |
127580 KB |
Output is correct |
31 |
Correct |
68 ms |
127512 KB |
Output is correct |
32 |
Correct |
73 ms |
127560 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
209 ms |
145548 KB |
Output is correct |
2 |
Correct |
376 ms |
145676 KB |
Output is correct |
3 |
Correct |
338 ms |
145540 KB |
Output is correct |
4 |
Correct |
354 ms |
145604 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
73 ms |
127528 KB |
Output is correct |
2 |
Correct |
66 ms |
127472 KB |
Output is correct |
3 |
Correct |
67 ms |
127416 KB |
Output is correct |
4 |
Correct |
66 ms |
127424 KB |
Output is correct |
5 |
Correct |
69 ms |
127476 KB |
Output is correct |
6 |
Correct |
69 ms |
127464 KB |
Output is correct |
7 |
Correct |
74 ms |
127420 KB |
Output is correct |
8 |
Correct |
69 ms |
127464 KB |
Output is correct |
9 |
Correct |
66 ms |
127428 KB |
Output is correct |
10 |
Correct |
73 ms |
127484 KB |
Output is correct |
11 |
Correct |
70 ms |
127520 KB |
Output is correct |
12 |
Correct |
77 ms |
127452 KB |
Output is correct |
13 |
Correct |
84 ms |
127428 KB |
Output is correct |
14 |
Correct |
69 ms |
127476 KB |
Output is correct |
15 |
Correct |
70 ms |
127468 KB |
Output is correct |
16 |
Correct |
73 ms |
127428 KB |
Output is correct |
17 |
Correct |
76 ms |
127444 KB |
Output is correct |
18 |
Correct |
76 ms |
127496 KB |
Output is correct |
19 |
Correct |
68 ms |
127492 KB |
Output is correct |
20 |
Correct |
69 ms |
127452 KB |
Output is correct |
21 |
Correct |
73 ms |
127528 KB |
Output is correct |
22 |
Correct |
76 ms |
127428 KB |
Output is correct |
23 |
Correct |
78 ms |
127564 KB |
Output is correct |
24 |
Correct |
70 ms |
127524 KB |
Output is correct |
25 |
Correct |
74 ms |
127556 KB |
Output is correct |
26 |
Correct |
76 ms |
127492 KB |
Output is correct |
27 |
Correct |
74 ms |
127464 KB |
Output is correct |
28 |
Correct |
74 ms |
127516 KB |
Output is correct |
29 |
Correct |
72 ms |
127460 KB |
Output is correct |
30 |
Correct |
70 ms |
127556 KB |
Output is correct |
31 |
Correct |
71 ms |
127576 KB |
Output is correct |
32 |
Correct |
74 ms |
127460 KB |
Output is correct |
33 |
Correct |
131 ms |
144708 KB |
Output is correct |
34 |
Correct |
138 ms |
144748 KB |
Output is correct |
35 |
Correct |
143 ms |
144664 KB |
Output is correct |
36 |
Correct |
155 ms |
144708 KB |
Output is correct |
37 |
Correct |
119 ms |
144708 KB |
Output is correct |
38 |
Correct |
120 ms |
144612 KB |
Output is correct |
39 |
Correct |
108 ms |
144580 KB |
Output is correct |
40 |
Correct |
129 ms |
144640 KB |
Output is correct |
41 |
Correct |
113 ms |
144692 KB |
Output is correct |
42 |
Correct |
112 ms |
144708 KB |
Output is correct |
43 |
Correct |
121 ms |
144652 KB |
Output is correct |
44 |
Correct |
120 ms |
149512 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
73 ms |
127520 KB |
Output is correct |
2 |
Correct |
76 ms |
127524 KB |
Output is correct |
3 |
Correct |
72 ms |
127488 KB |
Output is correct |
4 |
Correct |
70 ms |
127548 KB |
Output is correct |
5 |
Correct |
69 ms |
127508 KB |
Output is correct |
6 |
Correct |
73 ms |
127508 KB |
Output is correct |
7 |
Correct |
76 ms |
127428 KB |
Output is correct |
8 |
Correct |
68 ms |
127500 KB |
Output is correct |
9 |
Correct |
69 ms |
127428 KB |
Output is correct |
10 |
Correct |
74 ms |
127428 KB |
Output is correct |
11 |
Correct |
73 ms |
127508 KB |
Output is correct |
12 |
Correct |
73 ms |
127476 KB |
Output is correct |
13 |
Correct |
67 ms |
127436 KB |
Output is correct |
14 |
Correct |
68 ms |
127500 KB |
Output is correct |
15 |
Correct |
68 ms |
127428 KB |
Output is correct |
16 |
Correct |
73 ms |
127496 KB |
Output is correct |
17 |
Correct |
73 ms |
127472 KB |
Output is correct |
18 |
Correct |
68 ms |
127488 KB |
Output is correct |
19 |
Correct |
69 ms |
127424 KB |
Output is correct |
20 |
Correct |
71 ms |
127524 KB |
Output is correct |
21 |
Correct |
75 ms |
127456 KB |
Output is correct |
22 |
Correct |
82 ms |
127428 KB |
Output is correct |
23 |
Correct |
73 ms |
127592 KB |
Output is correct |
24 |
Correct |
71 ms |
127512 KB |
Output is correct |
25 |
Correct |
77 ms |
127556 KB |
Output is correct |
26 |
Correct |
73 ms |
127484 KB |
Output is correct |
27 |
Correct |
72 ms |
127556 KB |
Output is correct |
28 |
Correct |
66 ms |
127576 KB |
Output is correct |
29 |
Correct |
72 ms |
127556 KB |
Output is correct |
30 |
Correct |
74 ms |
127468 KB |
Output is correct |
31 |
Correct |
74 ms |
127628 KB |
Output is correct |
32 |
Correct |
67 ms |
127476 KB |
Output is correct |
33 |
Correct |
201 ms |
145604 KB |
Output is correct |
34 |
Correct |
371 ms |
145604 KB |
Output is correct |
35 |
Correct |
347 ms |
145384 KB |
Output is correct |
36 |
Correct |
381 ms |
145348 KB |
Output is correct |
37 |
Correct |
125 ms |
144268 KB |
Output is correct |
38 |
Correct |
147 ms |
144280 KB |
Output is correct |
39 |
Correct |
140 ms |
144232 KB |
Output is correct |
40 |
Correct |
141 ms |
143880 KB |
Output is correct |
41 |
Correct |
112 ms |
143872 KB |
Output is correct |
42 |
Correct |
117 ms |
143904 KB |
Output is correct |
43 |
Correct |
107 ms |
143744 KB |
Output is correct |
44 |
Correct |
126 ms |
143628 KB |
Output is correct |
45 |
Correct |
103 ms |
143668 KB |
Output is correct |
46 |
Correct |
112 ms |
143752 KB |
Output is correct |
47 |
Correct |
115 ms |
143360 KB |
Output is correct |
48 |
Correct |
116 ms |
149484 KB |
Output is correct |
49 |
Correct |
346 ms |
149248 KB |
Output is correct |
50 |
Correct |
313 ms |
149188 KB |
Output is correct |
51 |
Correct |
392 ms |
156000 KB |
Output is correct |
52 |
Correct |
229 ms |
155460 KB |
Output is correct |
53 |
Correct |
284 ms |
147628 KB |
Output is correct |
54 |
Correct |
218 ms |
148084 KB |
Output is correct |
55 |
Correct |
205 ms |
146252 KB |
Output is correct |
56 |
Correct |
248 ms |
151108 KB |
Output is correct |
57 |
Correct |
178 ms |
146912 KB |
Output is correct |
58 |
Correct |
197 ms |
147396 KB |
Output is correct |
59 |
Correct |
123 ms |
149460 KB |
Output is correct |