Submission #479339

#TimeUsernameProblemLanguageResultExecution timeMemory
479339jh050132circles (balkan11_2circles)C++17
Compilation error
0 ms0 KiB
#include <bits/stdc++.h> #define sz(X) (int)((X).size()) #define entire(X) X.begin(),X.end() using namespace std; typedef long long ll; void OJize(){cin.tie(NULL);ios_base::sync_with_stdio(false);} template <class T1, class T2>ostream&operator<<(ostream &os,pair<T1,T2>const&x){os<<'('<<x.first<<", "<<x.second<<')';return os;} template <class Ch, class Tr, class Container>basic_ostream<Ch,Tr>&operator<<(basic_ostream<Ch,Tr>&os,Container const&x){for(auto&y:x)os<<y<<" ";return os;} typedef long double T; // negative -1, zero 0, positive 1 template <typename T> int sgn(T x){return (T(0)<x) - (x<T(0));} /////////////////////////////////// 2D POINT BASICS struct pnt{ T x, y; pnt operator+(pnt p){return {x+p.x, y+p.y};} pnt operator-(pnt p){return {x-p.x, y-p.y};} pnt operator*(T d){return {x*d, y*d};} // !!!DOUBLE ONLY!!! pnt operator/(T d){return {x/d, y/d};} }; bool operator==(pnt a, pnt b){return a.x==b.x && a.y==b.y;} bool operator!=(pnt a, pnt b){return !(a==b);} bool operator<(pnt a, pnt b){return a.x<b.x || (a.x==b.x && a.y<b.y);} bool operator>(pnt a, pnt b){return b<a;} bool operator<=(pnt a, pnt b){return a.x<b.x || (a.x==b.x && a.y<=b.y);} bool operator>=(pnt a, pnt b){return b<=a;} T sq(pnt p){return p.x*p.x + p.y*p.y;} double abs(pnt p){return sqrt(sq(p));} T distsq(pnt p, pnt q){return sq(p-q);} double dist(pnt p, pnt q){return abs(p-q);} // dot/cross T dot(pnt v, pnt w){return v.x*w.x + v.y*w.y;} bool is_perp(pnt v, pnt w){return dot(v,w) == 0;} double angle(pnt v, pnt w){ return acos(clamp(dot(v,w) / abs(v) / abs(w), -1., 1.)); } T cross(pnt v, pnt w){return v.x*w.y - v.y*w.x;} // ccw (negative cw, zero collinear, positive ccw) T orient(pnt a, pnt b, pnt c){return cross(b-a, c-a);} int ccw(pnt a, pnt b, pnt c){return sgn(orient(a,b,c));} const pnt O = {0,0}; // IO istream& operator>>(istream& is, pnt &p){ return is >> p.x >> p.y; } ostream& operator<<(ostream& os, pnt p){ return os << "("<<p.x<<", "<<p.y<<")"; } /////////////////////////////////// 2D POINT TRANSFORM // translate p by vector v pnt translate(pnt p, pnt v){return p+v;} // scale p, centered at c, by factor pnt scale(pnt p, pnt c, T factor){return c + (p-c)*factor;} // rotate p, centered at c, by rad ccw // !!!DOUBLE ONLY!!! pnt rotate(pnt p, pnt c, double rad){ pnt q = p-c; return pnt{q.x*cos(rad)-q.y*sin(rad), q.x*sin(rad)+q.y*cos(rad)} + c; } // rotate p, centered at c, by pi/2 ccw pnt rot90(pnt p, pnt c){ pnt q = p-c; return pnt{-q.y, q.x} + c; } pnt rot90(pnt p){return {-p.y, p.x};} // transform r with the linear transformation that moves p--q to fp--fq // !!!DOUBLE ONLY!!! pnt linear_trans(pnt p, pnt q, pnt r, pnt fp, pnt fq){ pnt pq = q-p, num{cross(pq, fq-fp), dot(pq, fq-fp)}; return fp + pnt{cross(r-p, num), dot(r-p, num)} / sq(pq); } /////////////////////////////////// 2D POINT SORTING // sort points by (x, y) void cartesian_sort(vector<pnt> &V){ sort(entire(V), [](pnt v, pnt w){ return make_pair(v.x, v.y) < make_pair(w.x, w.y); }); } // sort points by angle, ccw, centered at c // tiebreaker is distance bool pnt_half(pnt p){ assert(p.x != 0 || p.y != 0); return p.y > 0 || (p.y == 0 && p.x < 0); } void polar_sort(vector<pnt> &V, pnt c){ for(pnt &p: V) p = p-c; sort(entire(V), [](pnt v, pnt w){ return make_tuple(pnt_half(v), T(0), sq(v)) < make_tuple(pnt_half(w), cross(v,w), sq(w)); }); for(pnt &p: V) p = p+c; } // sort points by orthogonal projection on v void line_sort(vector<pnt> &V, pnt v){ sort(entire(V), [&](pnt p, pnt q){ return dot(v,p) < dot(v,q); }); } /////////////////////////////////// straight line // [1] direction vector v, y-offset c (NOT Y-INTERCEPT!) // [2] equation ax+by = c // [3] two points p, q struct line{ pnt v; T c; line(): v({0,0}), c(0) {} line(pnt V, T C): v(V), c(C) {} line(T A, T B, T C): v({B,-A}), c(C) {} line(pnt P, pnt Q): v(Q-P), c(cross(v,P)) {} // positive ccw, zero collinear, negaitve cw T side(pnt p){return cross(v,p)-c;} double sqdist(pnt p){return side(p)*side(p) / sq(v);} double dist(pnt p){return abs(side(p)) / abs(v);} bool cmp_proj(pnt p, pnt q){return dot(v,p) < dot(v,q);} }; // line perpendicular to L, through p line perp_line(line L, pnt p){return {p, p+rot90(L.v)};} // translate L by vector v line translate(line L, pnt v){return {L.v, L.c+cross(L.v,v)};} // translate L orthogonally left by d // !!!DOUBLE ONLY!!! line shift_left(line L, double d){return {L.v, L.c+d*abs(L.v)};} // line intersection, true iff unique pair<bool, pnt> line_inter(line L1, line L2){ T d = cross(L1.v, L2.v); if(d == 0) return {false, {0,0}}; return {true, (L2.v*L1.c - L1.v*L2.c) / d}; } /////////////////////////////////// straight line, more advanced // projection of p onto L // !!!DOUBLE ONLY!!! pnt projection(line L, pnt p){return p - rot90(L.v)*L.side(p)/sq(L.v);} // reflection of p by L // !!!DOUBLE ONLY!!! pnt reflection(line L, pnt p){return p - rot90(L.v)*2*L.side(p)/sq(L.v);} // angle bisection // interior = true gives a bisector between L1 and L2 // false gives the other one // !!!DOUBLE ONLY!!! line angle_bisector(line L1, line L2, bool interior){ assert(cross(L1.v, L2.v) != 0); double sign = interior? 1: -1; return {L2.v/abs(L2.v) + L1.v/abs(L1.v) * sign, L2.c/abs(L2.v) + L1.c/abs(L1.v) * sign}; } /////////////////////////////////// line segment a--b // whether p is in the circle with diameter a--b bool in_disk(pnt a, pnt b, pnt p){ return dot(a-p, b-p) <= 0; } // whether p is in a--b bool on_seg(pnt a, pnt b, pnt p){ return orient(a,b,p) == 0 && in_disk(a,b,p); } // whether a--b and c--d has a unique proper intersection pair<bool, pnt> seg_inter_proper(pnt a, pnt b, pnt c, pnt d){ T oa = orient(c,d,a), ob = orient(c,d,b); T oc = orient(a,b,c), od = orient(a,b,d); if(sgn(oa)*sgn(ob) >= 0 || sgn(oc)*sgn(od) >= 0) return {false, {0,0}}; return {true, (a*ob - b*oa) / (ob-oa)}; } // intersection points (or their endpoints, if infinite) // !!!DOUBLE ONLY!!! vector<pnt> seg_inters(pnt a, pnt b, pnt c, pnt d) { auto [res, out] = seg_inter_proper(a,b,c,d); if(res) return {out}; vector<pnt> s; if (on_seg(c,d,a)) s.push_back(a); if (on_seg(c,d,b)) s.push_back(b); if (on_seg(a,b,c) && c!=a && c!=b) s.push_back(c); if (on_seg(a,b,d) && d!=a && d!=b) s.push_back(d); return s; } /////////////////////////////////// line segment distance // distance from p to a--b // !!!DOUBLE ONLY!!! double seg_pnt_dist(pnt a, pnt b, pnt p){ if(a != b){ line L(a,b); if(L.cmp_proj(a,p) && L.cmp_proj(p,b)) return L.dist(p); } return min(abs(p-a), abs(p-b)); } // distance from a--b to c--d // !!!DOUBLE ONLY!!! double seg_seg_dist(pnt a, pnt b, pnt c, pnt d){ if(seg_inter_proper(a,b,c,d).first) return 0; return min({seg_pnt_dist(a,b,c), seg_pnt_dist(a,b,d), seg_pnt_dist(c,d,a), seg_pnt_dist(c,d,b)}); } /////////////////////////////////// polygon typedef vector<pnt> Polygon; // twice the area // positive ccw, negative cw T area2(pnt a, pnt b, pnt c){return cross(b-a, c-a);} T area2(Polygon &P){ T a = 0; int n = sz(P); for(int i=0; i<n; i++){ a+= cross(P[i], P[(i+1)%n]); } return a; } // number of integer points on the line // !!!INTEGER ONLY!!! ll points_on_line(pnt p, pnt q){ ll dx = abs(p.x - q.x), dy = abs(p.y - q.y); return gcd(dx, dy) + 1; } // number of boundary & interior points on the line // area = i + p/2 - 1 // !!!INTEGER ONLY!!! pair<ll, ll> picks_theorem(Polygon &P){ if(sz(P) == 1) return {1ll, 0ll}; ll perip = points_on_line(P[0], P.back()) - sz(P); for(int i=1; i<sz(P); i++) perip+= points_on_line(P[i], P[i-1]); ll A2 = abs(area2(P)); ll inp = (A2 + 2 - perip) / 2; return {perip, inp}; } // TODO point in polygon testing /////////////////////////////////// convex polygon struct ConvexPolygon{ Polygon pnts, lower, upper; ConvexPolygon() {} // empty polygon ConvexPolygon(Polygon P){ auto it = min_element(entire(P)); rotate(P.begin(), it, P.end()); auto uppercut = max_element(entire(P)); pnts = P; lower.insert(lower.end(), P.begin(), uppercut+1); upper.insert(upper.end(), uppercut, P.end()); upper.push_back(P[0]); reverse(entire(upper)); } bool empty(){return pnts.empty();} }; T area2(ConvexPolygon &P){return area2(P.pnts);} // io ostream& operator<<(ostream& os, ConvexPolygon P){ for(pnt p: P.pnts) os << p << ' '; return os; } ConvexPolygon convex_hull(Polygon P){ if(sz(P) == 1) return ConvexPolygon(P); Polygon U, L; sort(entire(P)); for(pnt q: P){ while(sz(U)>1 && ccw(*(U.end()-2), U.back(), q) >= 0) U.pop_back(); while(sz(L)>1 && ccw(*(L.end()-2), L.back(), q) <= 0) L.pop_back(); U.push_back(q), L.push_back(q); } reverse(entire(U)); L.insert(L.end(), U.begin()+1, U.end()-1); return ConvexPolygon(L); } // for each point determine whether it's in P // ASSUME PNT IS SORTED!! otherwise, set sorted = false vector<bool> bulk_pnt_in_convex(ConvexPolygon P, vector<pnt> &ps, bool sorted=true){ if(!sorted) sort(entire(ps)); int il = 1, iu = 1; vector<bool> res(sz(ps)); for(int i=0; i<sz(ps); i++){ pnt p = ps[i]; if(p < P.lower[0] || p > P.lower.back()){res[i] = false; continue;} if(p == P.lower[0]){res[i] = true; continue;} while(il < sz(P.lower)-1 && P.lower[il] <= p) il++; while(iu < sz(P.upper)-1 && P.upper[iu] <= p) iu++; bool ansl = orient(P.lower[il-1], p, P.lower[il]) <= 0; bool ansu = orient(P.upper[iu-1], p, P.upper[iu]) >= 0; res[i] = ansl & ansu; } return res; } // TODO point in convex testing in O(logn) // pairs of {upper[i], lower[j]} vector<pair<int, int>> rotating_calipers(ConvexPolygon &P){ vector<pair<int, int>> res; vector<pnt> &U = P.upper, &L = P.lower; int i = 0, j = sz(L)-1; while(i < sz(U)-1 || j > 0){ res.push_back({i, j}); if(i == sz(U)-1) j--; else if(j == 0) i++; else if((U[i+1].y-U[i].y)*(L[j].x-L[j-1].x) > (L[j].y-L[j-1].y)*(U[i+1].x-U[i].x)) i++; else j--; } return res; } pair<pnt, pnt> farthest_convex(ConvexPolygon &P){ assert(!P.empty()); T ansd = 0; pair<pnt, pnt> ans; for(auto [i, j]: rotating_calipers(P)){ T d = distsq(P.upper[i], P.lower[j]); if(ansd < d) ansd = d, ans = {P.upper[i], P.lower[j]}; } return ans; } // each halfplane is the left (.side > 0) region of each line // !!! ASSUME BOUNDED !!! // !!! ASSUME UNIQUE SLOPES !!! todo remove this assumption ConvexPolygon halfplane_intersection(vector<line> planes){ // TODO sort(P, ...); deque<line> D; auto bad = [&](line A, line B, line L){ auto [b, p] = line_inter(A, B); return b && L.side(p) <= 0; }; for(line &L: planes){ while(sz(D) >= 2 && bad(D[sz(D)-2], D.back(), L)) D.pop_back(); while(sz(D) >= 2 && bad(D[0], D[1], L)) D.pop_front(); if(sz(D) < 2 || !bad(D.back(), L, D[0])) D.push_back(L); } if(sz(D) < 3) return ConvexPolygon(); Polygon P; for(int i=0; i<sz(D); i++){ auto [b, p] = line_inter(D[i], D[(i+1)%sz(D)]); P.push_back(p); } return ConvexPolygon(P); } /////////////////////////////////// circle struct circle{ pnt o; T r; circle(pnt P, T R): o(P), r(R) {} // -1 interior, 0 border, 1 exterior int side(pnt p){return sgn(distsq(o,p)-r*r);} }; bool operator==(circle a, circle b){return a.o==b.o && a.r==b.r;} bool operator!=(circle a, circle b){return !(a==b);} // !!!DOUBLE ONLY!!! circle circumcircle(pnt a, pnt b, pnt c){ b = b-a, c = c-a; assert(cross(b,c) != 0); pnt cen = a + rot90(b*sq(c) - c*sq(b))/cross(b,c)/2; return {cen, dist(cen, a)}; } // circle-line intersection // this only works for coords <= 30,000. TODO make it larger // WARNING: UNTESTED!!! int circle_line_inter0(circle C, line L){ pnt o = C.o; T r = C.r; return 1 + sgn(r*r*sq(L.v) - L.side(o)*L.side(o)); } // !!!DOUBLE ONLY!!! // WARNING: UNTESTED!!! tuple<int,pnt,pnt> circle_line_inter(circle C, line L){ pnt o = C.o; T r = C.r; double h2 = r*r - L.sqdist(o); if(h2 >= 0){ pnt p = projection(L, o), h = L.v*sqrt(h2) / abs(L.v); return {1+sgn(h2), p-h, p+h}; } return {0,{0,0},{0,0}}; } // circle-seg intersection // this only works for coords <= 30,000. TODO make it larger // WARNING: UNTESTED!!! int circle_seg_inter0(circle C, pnt a, pnt b){ T r = C.r; a = a-C.o, b = b-C.o; pnt v = b-a; T f0 = sq(a)-r*r, f1 = sq(b)-r*r, d = dot(a,v); if(-sq(v) <= d && d <= 0){ T fm = sq(v)*f0 - d*d; if(fm >= 0) return 1 - sgn(fm); return (f0 >= 0) + (f1 >= 0); } return !((f0>0 && f1>0) || (f0<0 && f1<0)); } // TODO make intersection finding version // make use of circle line intersection and in_disk // (not on_seg because of float errors!) // circle-circle intersection // -1 if infinite // this only works for coords <= 30,000. TODO make it larger int circle_circle_inter0(circle A, circle B){ if(A == B) return -1; pnt o1 = A.o, o2 = B.o, d = B.o-A.o; T r1 = A.r, r2 = B.r, d2 = sq(d); if(d2 == 0){return 0;} T R = d2+r1*r1-r2*r2; return 1+sgn(4*r1*r1*d2 - R*R); } // !!!DOUBLE ONLY!!! tuple<int,pnt,pnt> circle_circle_inter(circle A, circle B){ if(A == B) return {-1,{0,0},{0,0}}; pnt o1 = A.o, o2 = B.o, d = B.o-A.o; T r1 = A.r, r2 = B.r, d2 = sq(d); if(d2 == 0){return {0,{0,0},{0,0}};} double pd = (d2 + r1*r1 - r2*r2)/2; double h2 = r1*r1 - pd*pd/d2; if(h2 >= 0){ pnt p = o1 + d*pd/d2, h = rot90(d)*sqrt(h2/d2); return {1+sgn(h2), p-h, p+h}; } return {0,{0,0},{0,0}}; } // TODO tangent /////////////////////////////////////////////// /////////// MAIN CODE BELOW /////////////////// /////////////////////////////////////////////// int main(){OJize(); cout << fixed << setprecision(3); int n; cin>>n; Polygon P(n); for(int i=0; i<n; i++) cin>>P[i]; vector<line> L(n); for(int i=0; i<n; i++) L[i] = line(P[i], P[(i+1)%sz(P)]); double lo = 0, hi = 40000000; for(int ITER=0; ITER<60; ITER++){ double d = (lo + hi) / 2; vector<line> LS(n); for(int i=0; i<n; i++) LS[i] = shift_left(L[i], d); ConvexPolygon C = halfplane_intersection(LS); if(C.empty()){hi = d; continue;} auto [a, b] = farthest_convex(C); if(dist(a, b) < 2*d) hi = d; else lo = d; } cout << lo; }

Compilation message (stderr)

twocircles.cpp: In function 'double angle(pnt, pnt)':
twocircles.cpp:40:58: error: no matching function for call to 'clamp(T, double, double)'
   40 |     return acos(clamp(dot(v,w) / abs(v) / abs(w), -1., 1.));
      |                                                          ^
In file included from /usr/include/c++/10/algorithm:62,
                 from /usr/include/x86_64-linux-gnu/c++/10/bits/stdc++.h:65,
                 from twocircles.cpp:1:
/usr/include/c++/10/bits/stl_algo.h:3675:5: note: candidate: 'template<class _Tp> constexpr const _Tp& std::clamp(const _Tp&, const _Tp&, const _Tp&)'
 3675 |     clamp(const _Tp& __val, const _Tp& __lo, const _Tp& __hi)
      |     ^~~~~
/usr/include/c++/10/bits/stl_algo.h:3675:5: note:   template argument deduction/substitution failed:
twocircles.cpp:40:58: note:   deduced conflicting types for parameter 'const _Tp' ('long double' and 'double')
   40 |     return acos(clamp(dot(v,w) / abs(v) / abs(w), -1., 1.));
      |                                                          ^
In file included from /usr/include/c++/10/algorithm:62,
                 from /usr/include/x86_64-linux-gnu/c++/10/bits/stdc++.h:65,
                 from twocircles.cpp:1:
/usr/include/c++/10/bits/stl_algo.h:3693:5: note: candidate: 'template<class _Tp, class _Compare> constexpr const _Tp& std::clamp(const _Tp&, const _Tp&, const _Tp&, _Compare)'
 3693 |     clamp(const _Tp& __val, const _Tp& __lo, const _Tp& __hi, _Compare __comp)
      |     ^~~~~
/usr/include/c++/10/bits/stl_algo.h:3693:5: note:   template argument deduction/substitution failed:
twocircles.cpp:40:58: note:   deduced conflicting types for parameter 'const _Tp' ('long double' and 'double')
   40 |     return acos(clamp(dot(v,w) / abs(v) / abs(w), -1., 1.));
      |                                                          ^