Submission #47162

# Submission time Handle Problem Language Result Execution time Memory
47162 2018-04-28T13:04:49 Z platypus Jakarta Skyscrapers (APIO15_skyscraper) C++17
36 / 100
1000 ms 41756 KB
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <climits>
#include <cfloat>
#include <cstring>
#include <map>
#include <utility>
#include <set>
#include <iostream>
#include <memory>
#include <string>
#include <vector>
#include <list>
#include <algorithm>
#include <functional>
#include <sstream>
#include <complex>
#include <stack>
#include <queue>
#include <unordered_set>
#include <unordered_map>
#include <array>
#include <cassert>
#include <bitset>
using namespace std;
using LL = long long;

namespace std {
	template <>
	class hash<std::pair<int, int>> {
	public:
		size_t operator()(const std::pair<int, int>& x) const {
			return hash<int>()(x.first) ^ hash<int>()(x.second);
		}
	};
}

//Vは比較可能な値にする
template <typename V>
class Graph {
private:
	//unordered_map<V, vector<pair<V, LL>>>edge;
	vector<pair<pair<V, V>, LL>>raw;
	vector<V>vset;
public:
	//from->toへcostの辺を張る
	void addEdge(V from, V to, LL cost) {
		//edge[from].push_back(make_pair(to, cost));
		raw.push_back(make_pair(make_pair(from, to), cost));
		vset.push_back(from);
		vset.push_back(to);
	}
	//v1とv2間にcostの辺を張る
	void addUndirectedEdge(V v1, V v2, LL cost) {
		//edge[v1].push_back(make_pair(v2, cost));
		//edge[v2].push_back(make_pair(v1, cost));
		raw.push_back(make_pair(make_pair(v1, v2), cost));
		raw.push_back(make_pair(make_pair(v2, v1), cost));
		vset.push_back(v1);
		vset.push_back(v2);
	}
	//最短を求める
	void dijkstra(V start, map<V, LL>&dist) {
		sort(vset.begin(), vset.end());
		vset.erase(unique(vset.begin(), vset.end()), vset.end());
		int vnum = vset.size();
		vector<LL>disti(vnum, LLONG_MAX / 9);
		unordered_map<V, int>inv;
		for (int i = 0; i < vnum; ++i) {
			inv[vset[i]] = i;
		}
		vector<vector<pair<int, LL>>>edgei(vnum);
		for (auto& e : raw) {
			edgei[inv[e.first.first]].push_back(make_pair(inv[e.first.second], e.second));
		}
		//dist[start] = 0;
		//priority_queue<pair<LL, V>, vector<pair<LL, V>>, greater<pair<LL, V>>>que;
		disti[inv[start]] = 0;
		priority_queue<pair<LL, int>, vector<pair<LL, int>>, greater<pair<LL, int>>>que;
		que.push(make_pair(0LL, inv[start]));
		while (!que.empty()) {
			auto q = que.top();
			que.pop();
			int now = q.second;
			LL dis = q.first;
			if (disti[now] < dis) continue;
			for (auto e : edgei[now]) {
				int nxt = e.first;
				LL cost = e.second;
				if (/*!disti.count(nxt)  ||*/ disti[nxt] > disti[now] + cost) {
					disti[nxt] = disti[now] + cost;
					que.push(make_pair(disti[nxt], nxt));
				}
			}
		}
		for (int i = 0; i < vnum; ++i) {
			dist[vset[i]] = disti[i];
		}
	}
};

int N, M;

int mceil(int a, int b) {
	if (a == 0)return 0;
	return (a - 1) / b + 1;
}

int main(void)
{
	cin >> N >> M;
	using P = pair<int, int>;
	map<P, vector<int>>mp;
	int st = -1;
	int enb = -1, enp = -1, enr = -1;
	for (int i = 0; i < M; ++i) {
		int b, p;
		cin >> b >> p;
		if (i == 0)st = b;
		if (i == 1) {
			enb = b;
			enp = p;
			enr = b % p;
		}
		int rem = b % p;
		mp[make_pair(p, rem)].push_back(b);
	}
	Graph<P>G;
	for (auto elm : mp) {
		int p = elm.first.first;
		int rem = elm.first.second;
		auto& v = elm.second;
		int len = mceil(N - rem, p);
		vector<LL>dist(len, INT_MAX);
		for (int x : v)dist[x / p] = 0;
		/*for (int i = 1; i < len; ++i) {
			dist[i] = min(dist[i - 1] + 1, dist[i]);
		}
		for (int i = len - 1; i > 0; --i) {
			dist[i - 1] = min(dist[i] + 1, dist[i - 1]);
		}*/
		for (int i = 0; i < len; ++i) {
			if (dist[i] < INT_MAX)G.addEdge(P(0, i * p + rem), P(p, i * p + rem), dist[i]);
			G.addEdge(P(p, i * p + rem), P(0, i * p + rem), 0LL);
		}
		for (int i = 1; i < len; ++i) {
			G.addUndirectedEdge(P(p, (i - 1)*p + rem), P(p, i*p + rem), 1LL);
		}
	}
	int len = mceil(N - enr, enp);
	for (int i = 0; i < len; ++i) {
		if (abs(i - (enb / enp)) == 0)
			G.addEdge(P(0, i * enp + enr), P(N, i * enp + enr), abs(i - (enb / enp)));
	}
	map<P, LL> dist;
	G.dijkstra(P(0, st), dist);
	LL ans = LLONG_MAX;
	for (int i = 0; i < len; ++i) {
		if (abs(i - (enb / enp)) == 0 && dist.count(P(N, i * enp + enr)))
			ans = min(ans, dist[P(N, i * enp + enr)]);
	}
	if (ans >= LLONG_MAX / 9) {
		cout << -1 << endl;
	}
	else {
		cout << ans << endl;
	}
	return 0;
}
# Verdict Execution time Memory Grader output
1 Correct 2 ms 248 KB Output is correct
2 Correct 2 ms 356 KB Output is correct
3 Correct 2 ms 432 KB Output is correct
4 Correct 2 ms 508 KB Output is correct
5 Correct 2 ms 508 KB Output is correct
6 Correct 2 ms 508 KB Output is correct
7 Correct 2 ms 552 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 552 KB Output is correct
2 Correct 2 ms 560 KB Output is correct
3 Correct 2 ms 616 KB Output is correct
4 Correct 2 ms 616 KB Output is correct
5 Correct 2 ms 620 KB Output is correct
6 Correct 3 ms 620 KB Output is correct
7 Correct 2 ms 620 KB Output is correct
8 Correct 2 ms 620 KB Output is correct
9 Correct 2 ms 636 KB Output is correct
10 Correct 5 ms 1148 KB Output is correct
11 Correct 16 ms 2104 KB Output is correct
12 Correct 3 ms 2104 KB Output is correct
13 Correct 3 ms 2104 KB Output is correct
14 Correct 26 ms 2744 KB Output is correct
15 Correct 26 ms 2748 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 2748 KB Output is correct
2 Correct 2 ms 2748 KB Output is correct
3 Correct 2 ms 2748 KB Output is correct
4 Correct 2 ms 2748 KB Output is correct
5 Correct 2 ms 2748 KB Output is correct
6 Correct 2 ms 2748 KB Output is correct
7 Correct 2 ms 2748 KB Output is correct
8 Correct 2 ms 2748 KB Output is correct
9 Correct 2 ms 2748 KB Output is correct
10 Correct 5 ms 2748 KB Output is correct
11 Correct 17 ms 2748 KB Output is correct
12 Correct 3 ms 2748 KB Output is correct
13 Correct 4 ms 2748 KB Output is correct
14 Correct 26 ms 2748 KB Output is correct
15 Correct 25 ms 2748 KB Output is correct
16 Correct 10 ms 2748 KB Output is correct
17 Correct 43 ms 5600 KB Output is correct
18 Correct 15 ms 5600 KB Output is correct
19 Correct 12 ms 5600 KB Output is correct
20 Correct 7 ms 5600 KB Output is correct
21 Correct 6 ms 5600 KB Output is correct
22 Correct 12 ms 5600 KB Output is correct
23 Correct 15 ms 5600 KB Output is correct
24 Correct 31 ms 5600 KB Output is correct
25 Correct 17 ms 5600 KB Output is correct
26 Correct 16 ms 5600 KB Output is correct
27 Correct 16 ms 5600 KB Output is correct
28 Correct 58 ms 8516 KB Output is correct
29 Correct 232 ms 21520 KB Output is correct
30 Correct 37 ms 21520 KB Output is correct
31 Correct 88 ms 21520 KB Output is correct
32 Correct 55 ms 21520 KB Output is correct
33 Correct 754 ms 41376 KB Output is correct
34 Correct 793 ms 41376 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 41376 KB Output is correct
2 Correct 2 ms 41376 KB Output is correct
3 Correct 2 ms 41376 KB Output is correct
4 Correct 2 ms 41376 KB Output is correct
5 Correct 2 ms 41376 KB Output is correct
6 Correct 2 ms 41376 KB Output is correct
7 Correct 2 ms 41376 KB Output is correct
8 Correct 2 ms 41376 KB Output is correct
9 Correct 2 ms 41376 KB Output is correct
10 Correct 7 ms 41376 KB Output is correct
11 Correct 17 ms 41376 KB Output is correct
12 Correct 3 ms 41376 KB Output is correct
13 Correct 4 ms 41376 KB Output is correct
14 Correct 25 ms 41376 KB Output is correct
15 Correct 31 ms 41376 KB Output is correct
16 Correct 11 ms 41376 KB Output is correct
17 Correct 44 ms 41376 KB Output is correct
18 Correct 14 ms 41376 KB Output is correct
19 Correct 10 ms 41376 KB Output is correct
20 Correct 7 ms 41376 KB Output is correct
21 Correct 7 ms 41376 KB Output is correct
22 Correct 13 ms 41376 KB Output is correct
23 Correct 15 ms 41376 KB Output is correct
24 Correct 32 ms 41376 KB Output is correct
25 Correct 19 ms 41376 KB Output is correct
26 Correct 17 ms 41376 KB Output is correct
27 Correct 14 ms 41376 KB Output is correct
28 Correct 59 ms 41376 KB Output is correct
29 Correct 240 ms 41376 KB Output is correct
30 Correct 37 ms 41376 KB Output is correct
31 Correct 87 ms 41376 KB Output is correct
32 Correct 66 ms 41376 KB Output is correct
33 Correct 841 ms 41376 KB Output is correct
34 Correct 850 ms 41376 KB Output is correct
35 Correct 706 ms 41376 KB Output is correct
36 Correct 51 ms 41376 KB Output is correct
37 Execution timed out 1078 ms 41376 KB Time limit exceeded
38 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 2 ms 41376 KB Output is correct
2 Correct 2 ms 41376 KB Output is correct
3 Correct 2 ms 41376 KB Output is correct
4 Correct 2 ms 41376 KB Output is correct
5 Correct 2 ms 41376 KB Output is correct
6 Correct 2 ms 41376 KB Output is correct
7 Correct 2 ms 41376 KB Output is correct
8 Correct 2 ms 41376 KB Output is correct
9 Correct 2 ms 41376 KB Output is correct
10 Correct 6 ms 41376 KB Output is correct
11 Correct 15 ms 41376 KB Output is correct
12 Correct 3 ms 41376 KB Output is correct
13 Correct 3 ms 41376 KB Output is correct
14 Correct 36 ms 41376 KB Output is correct
15 Correct 25 ms 41376 KB Output is correct
16 Correct 11 ms 41376 KB Output is correct
17 Correct 44 ms 41376 KB Output is correct
18 Correct 20 ms 41376 KB Output is correct
19 Correct 14 ms 41376 KB Output is correct
20 Correct 7 ms 41376 KB Output is correct
21 Correct 8 ms 41376 KB Output is correct
22 Correct 12 ms 41376 KB Output is correct
23 Correct 17 ms 41376 KB Output is correct
24 Correct 30 ms 41376 KB Output is correct
25 Correct 21 ms 41376 KB Output is correct
26 Correct 18 ms 41376 KB Output is correct
27 Correct 14 ms 41376 KB Output is correct
28 Correct 57 ms 41376 KB Output is correct
29 Correct 229 ms 41376 KB Output is correct
30 Correct 36 ms 41376 KB Output is correct
31 Correct 101 ms 41376 KB Output is correct
32 Correct 55 ms 41376 KB Output is correct
33 Correct 721 ms 41376 KB Output is correct
34 Correct 775 ms 41376 KB Output is correct
35 Correct 781 ms 41376 KB Output is correct
36 Correct 53 ms 41376 KB Output is correct
37 Execution timed out 1073 ms 41756 KB Time limit exceeded
38 Halted 0 ms 0 KB -