Submission #47158

# Submission time Handle Problem Language Result Execution time Memory
47158 2018-04-28T10:11:41 Z platypus Jakarta Skyscrapers (APIO15_skyscraper) C++17
36 / 100
1000 ms 111596 KB
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <climits>
#include <cfloat>
#include <cstring>
#include <map>
#include <utility>
#include <set>
#include <iostream>
#include <memory>
#include <string>
#include <vector>
#include <list>
#include <algorithm>
#include <functional>
#include <sstream>
#include <complex>
#include <stack>
#include <queue>
#include <unordered_set>
#include <unordered_map>
#include <array>
#include <cassert>
#include <bitset>
using namespace std;
using LL = long long;

//Vは比較可能な値にする
template <typename V>
class Graph {
private:
	map<V, vector<pair<V, LL>>>edge;
public:
	//from->toへcostの辺を張る
	void addEdge(V from, V to, LL cost) {
		edge[from].push_back(make_pair(to, cost));
	}
	//v1とv2間にcostの辺を張る
	void addUndirectedEdge(V v1, V v2, LL cost) {
		edge[v1].push_back(make_pair(v2, cost));
		edge[v2].push_back(make_pair(v1, cost));
	}
	//最短を求める
	void dijkstra(V start, map<V, LL>&dist) {
		dist[start] = 0;
		priority_queue<pair<LL, V>, vector<pair<LL, V>>, greater<pair<LL, V>>>que;
		que.push(make_pair(0LL, start));
		while (!que.empty()) {
			auto q = que.top();
			que.pop();
			V now = q.second;
			LL dis = q.first;
			if (dist[now] < dis) continue;
			for (auto e : edge[now]) {
				V nxt = e.first;
				LL cost = e.second;
				if (!dist.count(nxt) || dist[nxt] > dist[now] + cost) {
					dist[nxt] = dist[now] + cost;
					que.push(make_pair(dist[nxt], nxt));
				}
			}
		}
	}
};

int N, M;

int mceil(int a, int b) {
	if (a == 0)return 0;
	return (a - 1) / b + 1;
}

int main(void)
{
	cin >> N >> M;
	using P = pair<int, int>;
	map<P, vector<int>>mp;
	int st = -1;
	int enb = -1, enp = -1, enr = -1;
	for (int i = 0; i < M; ++i) {
		int b, p;
		cin >> b >> p;
		if (i == 0)st = b;
		if (i == 1) {
			enb = b;
			enp = p;
			enr = b % p;
		}
		int rem = b % p;
		mp[make_pair(p, rem)].push_back(b);
	}
	Graph<P>G;
	for (auto elm : mp) {
		int p = elm.first.first;
		int rem = elm.first.second;
		auto& v = elm.second;
		int len = mceil(N - rem, p);
		vector<LL>dist(len, INT_MAX);
		for (int x : v)dist[x / p] = 0;
		/*for (int i = 1; i < len; ++i) {
			dist[i] = min(dist[i - 1] + 1, dist[i]);
		}
		for (int i = len - 1; i > 0; --i) {
			dist[i - 1] = min(dist[i] + 1, dist[i - 1]);
		}*/
		for (int i = 0; i < len; ++i) {
			if (dist[i] < INT_MAX)G.addEdge(P(0, i * p + rem), P(p, i * p + rem), dist[i]);
			G.addEdge(P(p, i * p + rem), P(0, i * p + rem), 0LL);
		}
		for (int i = 1; i < len; ++i) {
			G.addUndirectedEdge(P(p, (i - 1)*p + rem), P(p, i*p + rem), 1LL);
		}
	}
	int len = mceil(N - enr, enp);
	for (int i = 0; i < len; ++i) {
		if (abs(i - (enb / enp)) == 0)
			G.addEdge(P(0, i * enp + enr), P(N, i * enp + enr), abs(i - (enb / enp)));
	}
	map<P, LL> dist;
	G.dijkstra(P(0, st), dist);
	LL ans = LLONG_MAX;
	for (int i = 0; i < len; ++i) {
		if (abs(i - (enb / enp)) == 0 && dist.count(P(N, i * enp + enr)))
			ans = min(ans, dist[P(N, i * enp + enr)]);
	}
	if (ans == LLONG_MAX) {
		cout << -1 << endl;
	}
	else {
		cout << ans << endl;
	}
	return 0;
}
# Verdict Execution time Memory Grader output
1 Correct 2 ms 248 KB Output is correct
2 Correct 2 ms 356 KB Output is correct
3 Correct 2 ms 432 KB Output is correct
4 Correct 2 ms 432 KB Output is correct
5 Correct 2 ms 448 KB Output is correct
6 Correct 2 ms 488 KB Output is correct
7 Correct 2 ms 488 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 488 KB Output is correct
2 Correct 2 ms 504 KB Output is correct
3 Correct 2 ms 520 KB Output is correct
4 Correct 2 ms 520 KB Output is correct
5 Correct 2 ms 528 KB Output is correct
6 Correct 2 ms 608 KB Output is correct
7 Correct 2 ms 608 KB Output is correct
8 Correct 2 ms 616 KB Output is correct
9 Correct 2 ms 620 KB Output is correct
10 Correct 5 ms 1136 KB Output is correct
11 Correct 12 ms 1696 KB Output is correct
12 Correct 3 ms 1696 KB Output is correct
13 Correct 3 ms 1696 KB Output is correct
14 Correct 15 ms 2180 KB Output is correct
15 Correct 13 ms 2200 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 2200 KB Output is correct
2 Correct 2 ms 2200 KB Output is correct
3 Correct 2 ms 2200 KB Output is correct
4 Correct 2 ms 2200 KB Output is correct
5 Correct 2 ms 2200 KB Output is correct
6 Correct 2 ms 2200 KB Output is correct
7 Correct 2 ms 2200 KB Output is correct
8 Correct 2 ms 2200 KB Output is correct
9 Correct 2 ms 2200 KB Output is correct
10 Correct 5 ms 2200 KB Output is correct
11 Correct 11 ms 2200 KB Output is correct
12 Correct 3 ms 2200 KB Output is correct
13 Correct 4 ms 2200 KB Output is correct
14 Correct 13 ms 2292 KB Output is correct
15 Correct 13 ms 2304 KB Output is correct
16 Correct 5 ms 2304 KB Output is correct
17 Correct 38 ms 4264 KB Output is correct
18 Correct 6 ms 4264 KB Output is correct
19 Correct 5 ms 4264 KB Output is correct
20 Correct 8 ms 4264 KB Output is correct
21 Correct 4 ms 4264 KB Output is correct
22 Correct 6 ms 4264 KB Output is correct
23 Correct 18 ms 4264 KB Output is correct
24 Correct 41 ms 4264 KB Output is correct
25 Correct 22 ms 4264 KB Output is correct
26 Correct 17 ms 4264 KB Output is correct
27 Correct 15 ms 4264 KB Output is correct
28 Correct 47 ms 6520 KB Output is correct
29 Correct 149 ms 14860 KB Output is correct
30 Correct 47 ms 14860 KB Output is correct
31 Correct 98 ms 14860 KB Output is correct
32 Correct 86 ms 14860 KB Output is correct
33 Correct 319 ms 27864 KB Output is correct
34 Correct 275 ms 27952 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 27952 KB Output is correct
2 Correct 2 ms 27952 KB Output is correct
3 Correct 2 ms 27952 KB Output is correct
4 Correct 2 ms 27952 KB Output is correct
5 Correct 2 ms 27952 KB Output is correct
6 Correct 2 ms 27952 KB Output is correct
7 Correct 2 ms 27952 KB Output is correct
8 Correct 2 ms 27952 KB Output is correct
9 Correct 2 ms 27952 KB Output is correct
10 Correct 6 ms 27952 KB Output is correct
11 Correct 15 ms 27952 KB Output is correct
12 Correct 4 ms 27952 KB Output is correct
13 Correct 3 ms 27952 KB Output is correct
14 Correct 14 ms 27952 KB Output is correct
15 Correct 13 ms 27952 KB Output is correct
16 Correct 5 ms 27952 KB Output is correct
17 Correct 40 ms 27952 KB Output is correct
18 Correct 10 ms 27952 KB Output is correct
19 Correct 7 ms 27952 KB Output is correct
20 Correct 8 ms 27952 KB Output is correct
21 Correct 5 ms 27952 KB Output is correct
22 Correct 6 ms 27952 KB Output is correct
23 Correct 18 ms 27952 KB Output is correct
24 Correct 35 ms 27952 KB Output is correct
25 Correct 31 ms 27952 KB Output is correct
26 Correct 18 ms 27952 KB Output is correct
27 Correct 14 ms 27952 KB Output is correct
28 Correct 49 ms 27952 KB Output is correct
29 Correct 183 ms 27952 KB Output is correct
30 Correct 44 ms 27952 KB Output is correct
31 Correct 93 ms 27952 KB Output is correct
32 Correct 68 ms 27952 KB Output is correct
33 Correct 314 ms 28380 KB Output is correct
34 Correct 279 ms 28380 KB Output is correct
35 Correct 367 ms 28380 KB Output is correct
36 Correct 49 ms 28380 KB Output is correct
37 Correct 631 ms 41816 KB Output is correct
38 Correct 603 ms 41816 KB Output is correct
39 Correct 593 ms 41816 KB Output is correct
40 Correct 570 ms 41816 KB Output is correct
41 Correct 554 ms 41816 KB Output is correct
42 Correct 32 ms 41816 KB Output is correct
43 Correct 29 ms 41816 KB Output is correct
44 Correct 30 ms 41816 KB Output is correct
45 Execution timed out 1097 ms 110064 KB Time limit exceeded
46 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 2 ms 110064 KB Output is correct
2 Correct 2 ms 110064 KB Output is correct
3 Correct 2 ms 110064 KB Output is correct
4 Correct 2 ms 110064 KB Output is correct
5 Correct 2 ms 110064 KB Output is correct
6 Correct 2 ms 110064 KB Output is correct
7 Correct 2 ms 110064 KB Output is correct
8 Correct 2 ms 110064 KB Output is correct
9 Correct 2 ms 110064 KB Output is correct
10 Correct 5 ms 110064 KB Output is correct
11 Correct 15 ms 110064 KB Output is correct
12 Correct 3 ms 110064 KB Output is correct
13 Correct 3 ms 110064 KB Output is correct
14 Correct 13 ms 110064 KB Output is correct
15 Correct 13 ms 110064 KB Output is correct
16 Correct 4 ms 110064 KB Output is correct
17 Correct 37 ms 110064 KB Output is correct
18 Correct 6 ms 110064 KB Output is correct
19 Correct 7 ms 110064 KB Output is correct
20 Correct 12 ms 110064 KB Output is correct
21 Correct 6 ms 110064 KB Output is correct
22 Correct 9 ms 110064 KB Output is correct
23 Correct 27 ms 110064 KB Output is correct
24 Correct 41 ms 110064 KB Output is correct
25 Correct 23 ms 110064 KB Output is correct
26 Correct 18 ms 110064 KB Output is correct
27 Correct 14 ms 110064 KB Output is correct
28 Correct 48 ms 110064 KB Output is correct
29 Correct 147 ms 110064 KB Output is correct
30 Correct 62 ms 110064 KB Output is correct
31 Correct 86 ms 110064 KB Output is correct
32 Correct 82 ms 110064 KB Output is correct
33 Correct 277 ms 110064 KB Output is correct
34 Correct 305 ms 110064 KB Output is correct
35 Correct 331 ms 110064 KB Output is correct
36 Correct 48 ms 110064 KB Output is correct
37 Correct 590 ms 110064 KB Output is correct
38 Correct 561 ms 110064 KB Output is correct
39 Correct 573 ms 110064 KB Output is correct
40 Correct 592 ms 110064 KB Output is correct
41 Correct 581 ms 110064 KB Output is correct
42 Correct 36 ms 110064 KB Output is correct
43 Correct 29 ms 110064 KB Output is correct
44 Correct 24 ms 110064 KB Output is correct
45 Execution timed out 1097 ms 111596 KB Time limit exceeded
46 Halted 0 ms 0 KB -