Submission #470242

#TimeUsernameProblemLanguageResultExecution timeMemory
470242BlancaHMTraffic (IOI10_traffic)C++14
100 / 100
1349 ms161188 KiB
#include <iostream> #include <vector> using namespace std; typedef long long int ll; ll dfs(int S, int parent, vector<vector<int>> &adjList, vector<ll> &subtreePopulation) { for (int neighbouringCity : adjList[S]) { if (neighbouringCity == parent) continue; subtreePopulation[S] += dfs(neighbouringCity, S, adjList, subtreePopulation); } // subtreePopulation[S] contains the total population in the subtree of S return subtreePopulation[S]; } int chooseCity(vector<vector<int>> &adjList, vector<ll> &subtreePopulation) { int N = (int) adjList.size(); // we choose 0 originally as our city with lowest maximum congestion and find its largest congestion int chosenCity = 0; ll chosenCityMaxCongestion = 0; for (int rootNeighbour : adjList[0]) { chosenCityMaxCongestion = max(chosenCityMaxCongestion, subtreePopulation[rootNeighbour]); } // we iterate over all possible chosen cities and compare them with the current record for (int currentCity = 1; currentCity < N; currentCity++) { // before comparing with the congestion coming from children nodes, we will take as the maximum the congestion travelling from the currentCity's parent to the currentCity ll currentCityMaxCongestion = subtreePopulation[0] - subtreePopulation[currentCity]; // we now iterate over the currentCity's children nodes to see if the congestion from a child to the currentCity is higher than that from the parent for (int neighbouringCity : adjList[currentCity]) { if (subtreePopulation[neighbouringCity] < subtreePopulation[currentCity]) // if this is not the case, neighbouringCity is the parent of currentCity currentCityMaxCongestion = max(currentCityMaxCongestion, subtreePopulation[neighbouringCity]); } // if the city's maximum congestion is lower than the current record, we update it if (currentCityMaxCongestion < chosenCityMaxCongestion) { chosenCityMaxCongestion = currentCityMaxCongestion; chosenCity = currentCity; } } return chosenCity; } int LocateCentre(int N, int P[], int S[], int D[]) { vector<ll> subtreePopulation(N); vector<vector<int>> adjList(N); for (int i = 0; i < N - 1; i++) { // we convert the graph format to an adjacency list adjList[S[i]].emplace_back(D[i]); adjList[D[i]].emplace_back(S[i]); } for (int i = 0; i < N; i++) subtreePopulation[i] = P[i]; // we initialise the subtreePopulation vector so that it contains each city's population dfs(0, -1, adjList, subtreePopulation); return chooseCity(adjList, subtreePopulation); }
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...