Submission #468711

# Submission time Handle Problem Language Result Execution time Memory
468711 2021-08-29T13:05:43 Z hoaphat1 Unique Cities (JOI19_ho_t5) C++17
0 / 100
577 ms 36880 KB
#include <bits/stdc++.h>
 
using namespace std;

template <typename T>
class graph {
 public:
  struct edge {
    int from;
    int to;
    T cost;
  };
 
  vector<edge> edges;
  vector<vector<int>> g;
  int n;
 
  graph(int _n) : n(_n) {
    g.resize(n);
  }
 
  virtual int add(int from, int to, T cost) = 0;
};
 
template <typename T>
class forest : public graph<T> {
 public:
  using graph<T>::edges;
  using graph<T>::g;
  using graph<T>::n;
 
  forest(int _n) : graph<T>(_n) {
  }
 
  int add(int from, int to, T cost = 1) {
    assert(0 <= from && from < n && 0 <= to && to < n);
    int id = (int) edges.size();
    assert(id < n - 1);
    g[from].push_back(id);
    g[to].push_back(id);
    edges.push_back({from, to, cost});
    return id;
  }
};
 
template <typename T>
class dfs_forest : public forest<T> {
 public:
  using forest<T>::edges;
  using forest<T>::g;
  using forest<T>::n;
 
  vector<int> pv;
  vector<int> pe;
  vector<int> order;
  vector<int> pos;
  vector<int> end;
  vector<int> sz;
  vector<int> root;
  vector<int> depth;
  vector<T> dist;
 
  dfs_forest(int _n) : forest<T>(_n) {
  }
 
  void init() {
    pv = vector<int>(n, -1);
    pe = vector<int>(n, -1);
    order.clear();
    pos = vector<int>(n, -1);
    end = vector<int>(n, -1);
    sz = vector<int>(n, 0);
    root = vector<int>(n, -1);
    depth = vector<int>(n, -1);
    dist = vector<T>(n);
  }
 
  void clear() {
    pv.clear();
    pe.clear();
    order.clear();
    pos.clear();
    end.clear();
    sz.clear();
    root.clear();
    depth.clear();
    dist.clear();
  }
 
 private:
  void do_dfs(int v) {
    pos[v] = (int) order.size();
    order.push_back(v);
    sz[v] = 1;
    for (int id : g[v]) {
      if (id == pe[v]) {
        continue;
      }
      auto &e = edges[id];
      int to = e.from ^ e.to ^ v;
      depth[to] = depth[v] + 1;
      dist[to] = dist[v] + e.cost;
      pv[to] = v;
      pe[to] = id;
      root[to] = (root[v] != -1 ? root[v] : to);
      do_dfs(to);
      sz[v] += sz[to];
    }
    end[v] = (int) order.size() - 1;
  }
 
  void do_dfs_from(int v) {
    depth[v] = 0;
    dist[v] = T{};
    root[v] = v;
    pv[v] = pe[v] = -1;
    do_dfs(v);
  }
 
 public:
  void dfs(int v, bool clear_order = true) {
    if (pv.empty()) {
      init();
    } else {
      if (clear_order) {
        order.clear();
      }
    }
    do_dfs_from(v);
  }
 
  void dfs_all() {
    init();
    for (int v = 0; v < n; v++) {
      if (depth[v] == -1) {
        do_dfs_from(v);
      }
    }
    assert((int) order.size() == n);
  }
};

template <typename T>
class lca_forest : public dfs_forest<T> {
 public:
  using dfs_forest<T>::edges;
  using dfs_forest<T>::g;
  using dfs_forest<T>::n;
  using dfs_forest<T>::pv;
  using dfs_forest<T>::pos;
  using dfs_forest<T>::end;
  using dfs_forest<T>::depth;
 
  int h;
  vector<vector<int>> pr;
 
  lca_forest(int _n) : dfs_forest<T>(_n) {
  }
 
  inline void build_lca() {
    assert(!pv.empty());
    int max_depth = 0;
    for (int i = 0; i < n; i++) {
      max_depth = max(max_depth, depth[i]);
    }
    h = 1;
    while ((1 << h) <= max_depth) {
      h++;
    }
    pr.resize(n);
    for (int i = 0; i < n; i++) {
      pr[i].resize(h);
      pr[i][0] = pv[i];
    }
    for (int j = 1; j < h; j++) {
      for (int i = 0; i < n; i++) {
        pr[i][j] = (pr[i][j - 1] == -1 ? -1 : pr[pr[i][j - 1]][j - 1]);
      }
    }
  }
 
  inline bool anc(int x, int y) {
    return (pos[x] <= pos[y] && end[y] <= end[x]);
  }
 
  inline int go_up(int x, int up) {
    assert(!pr.empty());
    up = min(up, (1 << h) - 1);
    for (int j = h - 1; j >= 0; j--) {
      if (up & (1 << j)) {
        x = pr[x][j];
        if (x == -1) {
          break;
        }
      }
    }
    return x;
  }
 
  inline int lca(int x, int y) {
    assert(!pr.empty());
    if (anc(x, y)) {
      return x;
    }
    if (anc(y, x)) {
      return y;
    }
    for (int j = h - 1; j >= 0; j--) {
      if (pr[x][j] != -1 && !anc(pr[x][j], y)) {
        x = pr[x][j];
      }
    }
    return pr[x][0];
  }
  
  inline int length(int x, int y) {
  	return depth[x] + depth[y] - 2 * depth[lca(x, y)];
	}
};

class segtree {
 public:
  struct node {
    // don't forget to set default value (used for leaves)
    // not necessarily neutral element!
    pair<int, int> val = {0, 0};
    int put = 0;
 
    void apply(int l, int r, int v) {
      val.first += v;
      if (l != r) val.second += v;
      put += v;
    }
  };
 
  node unite(const node &a, const node &b) const {
    node res;
    if (a.val.first > b.val.first) {
    	res.val = make_pair(a.val.first, max(a.val.second, b.val.first));
		}
		else {
			res.val = make_pair(b.val.first, max(a.val.first, b.val.second));
		}
    return res;
  }
 
  inline void push(int x, int l, int r) {
    int y = (l + r) >> 1;
    int z = x + ((y - l + 1) << 1);
    if (tree[x].put != 0) {
      tree[x + 1].apply(l, y, tree[x].put);
      tree[z].apply(y + 1, r, tree[x].put);
      tree[x].put = 0;
    }
  }
 
  inline void pull(int x, int z) {
    tree[x] = unite(tree[x + 1], tree[z]);
  }
 
  int n;
  vector<node> tree;
 
  void build(int x, int l, int r) {
    if (l == r) {
      return;
    }
    int y = (l + r) >> 1;
    int z = x + ((y - l + 1) << 1);
    build(x + 1, l, y);
    build(z, y + 1, r);
    pull(x, z);
  }
 
  template <typename M>
  void build(int x, int l, int r, const vector<M> &v) {
    if (l == r) {
      tree[x].apply(l, r, v[l]);
      return;
    }
    int y = (l + r) >> 1;
    int z = x + ((y - l + 1) << 1);
    build(x + 1, l, y, v);
    build(z, y + 1, r, v);
    pull(x, z);
  }
 
  node get(int x, int l, int r, int ll, int rr) {
    if (ll <= l && r <= rr) {
      return tree[x];
    }
    int y = (l + r) >> 1;
    int z = x + ((y - l + 1) << 1);
    push(x, l, r);
    node res{};
    if (rr <= y) {
      res = get(x + 1, l, y, ll, rr);
    } else {
      if (ll > y) {
        res = get(z, y + 1, r, ll, rr);
      } else {
        res = unite(get(x + 1, l, y, ll, rr), get(z, y + 1, r, ll, rr));
      }
    }
    pull(x, z);
    return res;
  }
 
  template <typename... M>
  void modify(int x, int l, int r, int ll, int rr, const M&... v) {
    if (ll <= l && r <= rr) {
      tree[x].apply(l, r, v...);
      return;
    }
    int y = (l + r) >> 1;
    int z = x + ((y - l + 1) << 1);
    push(x, l, r);
    if (ll <= y) {
      modify(x + 1, l, y, ll, rr, v...);
    }
    if (rr > y) {
      modify(z, y + 1, r, ll, rr, v...);
    }
    pull(x, z);
  }
 
  int find_first_knowingly(int x, int l, int r, const function<bool(const node&)> &f) {
    if (l == r) {
      return l;
    }
    push(x, l, r);
    int y = (l + r) >> 1;
    int z = x + ((y - l + 1) << 1);
    int res;
    if (f(tree[x + 1])) {
      res = find_first_knowingly(x + 1, l, y, f);
    } else {
      res = find_first_knowingly(z, y + 1, r, f);
    }
    pull(x, z);
    return res;
  }
 
  int find_first(int x, int l, int r, int ll, int rr, const function<bool(const node&)> &f) {
    if (ll <= l && r <= rr) {
      if (!f(tree[x])) {
        return -1;
      }
      return find_first_knowingly(x, l, r, f);
    }
    push(x, l, r);
    int y = (l + r) >> 1;
    int z = x + ((y - l + 1) << 1);
    int res = -1;
    if (ll <= y) {
      res = find_first(x + 1, l, y, ll, rr, f);
    }
    if (rr > y && res == -1) {
      res = find_first(z, y + 1, r, ll, rr, f);
    }
    pull(x, z);
    return res;
  }
 
  int find_last_knowingly(int x, int l, int r, const function<bool(const node&)> &f) {
    if (l == r) {
      return l;
    }
    push(x, l, r);
    int y = (l + r) >> 1;
    int z = x + ((y - l + 1) << 1);
    int res;
    if (f(tree[z])) {
      res = find_last_knowingly(z, y + 1, r, f);
    } else {
      res = find_last_knowingly(x + 1, l, y, f);
    }
    pull(x, z);
    return res;
  }
 
  int find_last(int x, int l, int r, int ll, int rr, const function<bool(const node&)> &f) {
    if (ll <= l && r <= rr) {
      if (!f(tree[x])) {
        return -1;
      }
      return find_last_knowingly(x, l, r, f);
    }
    push(x, l, r);
    int y = (l + r) >> 1;
    int z = x + ((y - l + 1) << 1);
    int res = -1;
    if (rr > y) {
      res = find_last(z, y + 1, r, ll, rr, f);
    }
    if (ll <= y && res == -1) {
      res = find_last(x + 1, l, y, ll, rr, f);
    }
    pull(x, z);
    return res;
  }
 
  segtree(int _n) : n(_n) {
    assert(n > 0);
    tree.resize(2 * n - 1);
    build(0, 0, n - 1);
  }
 
  template <typename M>
  segtree(const vector<M> &v) {
    n = v.size();
    assert(n > 0);
    tree.resize(2 * n - 1);
    build(0, 0, n - 1, v);
  }
 
  node get(int ll, int rr) {
    assert(0 <= ll && ll <= rr && rr <= n - 1);
    return get(0, 0, n - 1, ll, rr);
  }
 
  node get(int p) {
    assert(0 <= p && p <= n - 1);
    return get(0, 0, n - 1, p, p);
  }
 
  template <typename... M>
  void modify(int ll, int rr, const M&... v) {
    assert(0 <= ll && ll <= rr && rr <= n - 1);
    modify(0, 0, n - 1, ll, rr, v...);
  }
 
  // find_first and find_last call all FALSE elements
  // to the left (right) of the sought position exactly once
 
  int find_first(int ll, int rr, const function<bool(const node&)> &f) {
    assert(0 <= ll && ll <= rr && rr <= n - 1);
    return find_first(0, 0, n - 1, ll, rr, f);
  }
 
  int find_last(int ll, int rr, const function<bool(const node&)> &f) {
    assert(0 <= ll && ll <= rr && rr <= n - 1);
    return find_last(0, 0, n - 1, ll, rr, f);
  }
};
/// template from tourist

#include<ext/pb_ds/assoc_container.hpp>
using namespace __gnu_pbds;

template<typename T> using order_set = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
 
int main() {
  ios::sync_with_stdio(false);
  cin.tie(0);
  int n, m;
  cin >> n >> m;
  lca_forest<int> g(n);
  for (int i = 1; i < n; i++) {
  	int u, v;
  	cin >> u >> v;
  	--u; --v;
  	g.add(u, v);
	}
	g.dfs(0);
	vector<int> dia(2);
	dia[0] = max_element(g.depth.begin(), g.depth.end()) - g.depth.begin();
	g.dfs(dia[0]);
	dia[1] = max_element(g.depth.begin(), g.depth.end()) - g.depth.begin();
	g.build_lca();
	vector<int> c(n);
	for (int i = 0; i < n; i++) {
		cin >> c[i];
		--c[i];
	}
	vector<order_set<int>> s(2);
	for (int i = 0; i < 2; i++) {
		vector<vector<int>> belong(n);
		function<void(int, int, int)> dfs = [&](int v, int p, int depth) {
			belong[depth].push_back(v);
			for (int id: g.g[v]) {
				auto& e = g.edges[id];
				int u = e.from ^ e.to ^ v;
				if (u == p) continue;
				dfs(u, v, depth + 1);
			}
		};
		dfs(dia[i], -1, 0);
		vector<bool> kt(m);
		for (int j = 0; j < n; j++) {
			if ((int) belong[j].size() != 1) continue;
			for (auto&v : belong[j]) {
				if (!kt[c[v]]) {
					kt[c[v]] = true;
					s[i].insert(j);
				}
				else if (c[dia[i]] == c[v]) s[i].insert(n);
			}
		}
	}
	segtree Tree(n);
	for (int i = 0; i < n; i++) Tree.modify(g.pos[i], g.pos[i], g.depth[i]);
	vector<pair<int, int>> d(n);
	function<void(int, int)> dfs = [&](int v, int p) {
		d[v] = Tree.get(0, Tree.n - 1).val;
		for (int id: g.g[v]) {
			auto& e = g.edges[id];
			int u = e.from ^ e.to ^ v;
			if (u == p) continue;
			Tree.modify(0, Tree.n - 1, 1);
			Tree.modify(g.pos[u], g.end[u], -2);
			dfs(u, v);
			Tree.modify(0, Tree.n - 1, -1);
			Tree.modify(g.pos[u], g.end[u], 2);
		}
	};
	dfs(dia[0], -1);
	for (int i = 0; i < n; i++) {
		bool flag = false;
		for (int j = 0; j < 2; j++) {
			if (i == dia[j]) {
				cout << (int) s[j].size() - 1 << "\n";
				flag = true;
				break;
			}
		}
		if (flag) continue;
		int res = 0;
		int d1 = g.length(dia[0], i);
		int d2 = g.length(dia[1], i);
		if (d2 > d1) {
			swap(d1, d2);
			res = 1;
		}
		assert(d1 == d[i].first);
		cout << s[res].order_of_key(d1 - d[i].second) << "\n";
	}
}
# Verdict Execution time Memory Grader output
1 Correct 1 ms 204 KB Output is correct
2 Incorrect 4 ms 716 KB Output isn't correct
3 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Incorrect 411 ms 26444 KB Output isn't correct
2 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Incorrect 577 ms 36880 KB Output isn't correct
2 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 1 ms 204 KB Output is correct
2 Incorrect 4 ms 716 KB Output isn't correct
3 Halted 0 ms 0 KB -