#include <bits/stdc++.h>
#pragma GCC optimization("O3")
#define ll long long
using namespace std;
const ll mod = (ll) 1e9+9;
const ll base = 29;
int lg2[300005];
void prepLg2(int bound){
for(int i=2;i<=bound;i++)
lg2[i] = lg2[i>>1] + 1;
}
struct suffixArray{
int sa[300005], saRank[300005], tmp[300005];
int lcp[300005][19];
int strLen, gap;
bool saCmp(int x,int y){
if (saRank[x] != saRank[y])
return saRank[x] < saRank[y];
return x+gap < strLen && y+gap < strLen ? saRank[x+gap] < saRank[y+gap] : x > y;
}
void build_lcp(string &s){
int k = 0;
for(int i = 0; i < strLen; i ++){
if (saRank[i] != strLen - 1){
for (int j = sa[saRank[i] + 1]; max(i+k, j+k) < strLen && s[i + k] == s[j + k];) ++k;
lcp[saRank[i]][0] = k;
if (k) k--;
}
}
for(int k = 1; k < 19; k ++){
for(int i = 0; i < strLen; i ++)
if (i + (1<<k) < strLen)
lcp[i][k] = min(lcp[i][k-1], lcp[i+(1<<(k-1))][k-1]);
else break;
}
}
int getLcp(int l,int r){
if (l > r) swap(l, r);
if (l == r) return strLen - sa[l];
int k = lg2[r - l];
return min(lcp[l][k], lcp[r-(1<<k)][k]);
}
void build(string &s, int isIndexFromOne = 0){
strLen = s.size();
//for(int i = 0; i < strLen; i ++)
// lcp[i].assign(20, 0);
for(int i = 0; i < strLen; i ++)
sa[i] = i, saRank[i] = s[i];
for(gap = 1;;gap *= 2){
sort(sa, sa + strLen, [&](int a, int b) {return this->saCmp(a, b);});
//sort(sa.begin(), sa.begin() + strLen, saCmp);
for(int i = 0; i < strLen; i ++) tmp[i+1] = tmp[i] + saCmp(sa[i], sa[i+1]);
for(int i = 0; i < strLen; i ++) saRank[sa[i]] = tmp[i];
if (tmp[strLen-1] == strLen-1) break;
}
build_lcp(s);
}
};
int n;
string s[2];
suffixArray suff;
ll hashCode[2][300000], pBase[300000];
void prepHash(){
pBase[0] = 1;
for(int i=1;i<300000;i++)
pBase[i] = pBase[i-1] * base % mod;
hashCode[0][0] = s[0][0] - 'a' + 1;
hashCode[1][0] = s[1][0] - 'a' + 1;
for(int i=1;i<n;i++)
hashCode[0][i] = (hashCode[0][i-1] + pBase[i] * (s[0][i] - 'a' + 1)) % mod,
hashCode[1][i] = (hashCode[1][i-1] + pBase[i] * (s[1][i] - 'a' + 1)) % mod;
}
bool checkPalindrome(int l1,int r1){
int l2 = n-1-r1;
int r2 = n-1-l1;
ll val1 = (hashCode[0][r1] - (l1 == 0 ? 0 : hashCode[0][l1-1]) + mod) % mod;
ll val2 = (hashCode[1][r2] - (l2 == 0 ? 0 : hashCode[1][l2-1]) + mod) % mod;
val1 = val1 * pBase[max(0, r2 - r1)] % mod;
val2 = val2 * pBase[max(0, r1 - r2)] % mod;
return val1 == val2;
}
long long ans;
long long solve(int p, int sz) {
int id = suff.saRank[p];
int l = id;
if(n <= ans / sz) return 0;
for(int i = 18; i >= 0; --i) {
int cur = l - (1 << i);
if(cur < 0) continue;
if(suff.lcp[cur][i] < sz) {
if((n - cur) <= ans / sz) return 0;
}
else l = cur;
}
int r = id;
for(int i = 18; i >= 0; --i) {
if(suff.lcp[r][i] < sz) {
int cur = min(n - 1, r + (1 << i));
if((cur - l + 1) <= ans / sz) return 0;
}
else r = min(n - 1, r + (1 << i));
}
return 1LL * sz * (r - l + 1);
}
int main(){
prepLg2(300000);
iostream::sync_with_stdio(0);
cin >> s[0];
n = s[0].size();
s[1] = s[0];
reverse(s[1].begin(), s[1].end());
suff.build(s[0]);
prepHash();
int sz0, sz1;
sz0 = 0, sz1 = 1;
ans = 0;
//return 0;
for(int i = n - 1; i >= 0; --i) {
int p0 = i + 2 * sz0 - 1;
int p1 = i + 2 * sz1 - 2;
if(p0 >= p1) ans = max(ans, solve(i, p0 - i + 1));
else ans = max(ans, solve(i, p1 - i + 1));
if(i == 0) continue;
sz0++, sz1++;
while(sz0) {
p0 = i - 1 + 2 * sz0 - 1;
if(!checkPalindrome(i - 1, p0)) sz0--;
else break;
}
while(sz1) {
p1 = i - 1 + 2 * sz1 - 2;
if(!checkPalindrome(i - 1, p1)) sz1--;
else break;
}
}
cout << ans;
//cout << setprecision(6) << fixed << clock() * 1000 / CLOCKS_PER_SEC << endl;
}
Compilation message
palindrome.cpp:2:0: warning: ignoring #pragma GCC optimization [-Wunknown-pragmas]
#pragma GCC optimization("O3")
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
7 ms |
3960 KB |
Output is correct |
2 |
Correct |
6 ms |
3960 KB |
Output is correct |
3 |
Correct |
6 ms |
4012 KB |
Output is correct |
4 |
Correct |
6 ms |
4012 KB |
Output is correct |
5 |
Correct |
6 ms |
4064 KB |
Output is correct |
6 |
Correct |
7 ms |
4064 KB |
Output is correct |
7 |
Correct |
6 ms |
4064 KB |
Output is correct |
8 |
Correct |
6 ms |
4116 KB |
Output is correct |
9 |
Correct |
7 ms |
4116 KB |
Output is correct |
10 |
Correct |
6 ms |
4116 KB |
Output is correct |
11 |
Correct |
7 ms |
4124 KB |
Output is correct |
12 |
Correct |
6 ms |
4124 KB |
Output is correct |
13 |
Correct |
6 ms |
4156 KB |
Output is correct |
14 |
Correct |
6 ms |
4156 KB |
Output is correct |
15 |
Correct |
6 ms |
4156 KB |
Output is correct |
16 |
Correct |
6 ms |
4156 KB |
Output is correct |
17 |
Correct |
6 ms |
4156 KB |
Output is correct |
18 |
Correct |
6 ms |
4156 KB |
Output is correct |
19 |
Correct |
6 ms |
4176 KB |
Output is correct |
20 |
Correct |
6 ms |
4176 KB |
Output is correct |
21 |
Correct |
7 ms |
4176 KB |
Output is correct |
22 |
Correct |
6 ms |
4176 KB |
Output is correct |
23 |
Correct |
6 ms |
4176 KB |
Output is correct |
24 |
Correct |
8 ms |
4176 KB |
Output is correct |
25 |
Correct |
6 ms |
4176 KB |
Output is correct |
26 |
Correct |
6 ms |
4176 KB |
Output is correct |
27 |
Correct |
6 ms |
4176 KB |
Output is correct |
28 |
Correct |
6 ms |
4176 KB |
Output is correct |
29 |
Correct |
6 ms |
4176 KB |
Output is correct |
30 |
Correct |
6 ms |
4176 KB |
Output is correct |
31 |
Correct |
6 ms |
4176 KB |
Output is correct |
32 |
Correct |
6 ms |
4176 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
7 ms |
4220 KB |
Output is correct |
2 |
Correct |
6 ms |
4220 KB |
Output is correct |
3 |
Correct |
7 ms |
4220 KB |
Output is correct |
4 |
Correct |
7 ms |
4220 KB |
Output is correct |
5 |
Correct |
6 ms |
4220 KB |
Output is correct |
6 |
Correct |
7 ms |
4220 KB |
Output is correct |
7 |
Correct |
6 ms |
4220 KB |
Output is correct |
8 |
Correct |
8 ms |
4220 KB |
Output is correct |
9 |
Correct |
7 ms |
4224 KB |
Output is correct |
10 |
Correct |
7 ms |
4224 KB |
Output is correct |
11 |
Correct |
7 ms |
4252 KB |
Output is correct |
12 |
Correct |
8 ms |
4252 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
15 ms |
5244 KB |
Output is correct |
2 |
Correct |
15 ms |
5244 KB |
Output is correct |
3 |
Correct |
15 ms |
5244 KB |
Output is correct |
4 |
Correct |
14 ms |
5244 KB |
Output is correct |
5 |
Correct |
19 ms |
5372 KB |
Output is correct |
6 |
Correct |
16 ms |
5372 KB |
Output is correct |
7 |
Correct |
14 ms |
5372 KB |
Output is correct |
8 |
Correct |
12 ms |
5372 KB |
Output is correct |
9 |
Correct |
12 ms |
5372 KB |
Output is correct |
10 |
Correct |
26 ms |
5372 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
131 ms |
14508 KB |
Output is correct |
2 |
Correct |
119 ms |
14588 KB |
Output is correct |
3 |
Correct |
128 ms |
14588 KB |
Output is correct |
4 |
Correct |
120 ms |
14664 KB |
Output is correct |
5 |
Correct |
181 ms |
14664 KB |
Output is correct |
6 |
Correct |
151 ms |
14664 KB |
Output is correct |
7 |
Correct |
122 ms |
14664 KB |
Output is correct |
8 |
Correct |
96 ms |
14664 KB |
Output is correct |
9 |
Correct |
113 ms |
14688 KB |
Output is correct |
10 |
Correct |
177 ms |
14688 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
479 ms |
35332 KB |
Output is correct |
2 |
Correct |
403 ms |
35460 KB |
Output is correct |
3 |
Correct |
458 ms |
35460 KB |
Output is correct |
4 |
Correct |
390 ms |
35460 KB |
Output is correct |
5 |
Correct |
776 ms |
35460 KB |
Output is correct |
6 |
Correct |
454 ms |
35844 KB |
Output is correct |
7 |
Correct |
443 ms |
36032 KB |
Output is correct |
8 |
Correct |
394 ms |
36356 KB |
Output is correct |
9 |
Correct |
408 ms |
36652 KB |
Output is correct |
10 |
Correct |
774 ms |
36964 KB |
Output is correct |
11 |
Correct |
613 ms |
37264 KB |
Output is correct |
12 |
Correct |
423 ms |
37548 KB |
Output is correct |