Submission #459904

#TimeUsernameProblemLanguageResultExecution timeMemory
459904izhang05Skyscraper (JOI16_skyscraper)C++17
0 / 100
225 ms264220 KiB
#include <bits/stdc++.h> using namespace std; //#define DEBUG void setIO(const string &name) { ios_base::sync_with_stdio(false); cin.tie(nullptr); cin.exceptions(istream::failbit); #ifdef LOCAL freopen((name + ".in").c_str(), "r", stdin); freopen((name + ".out").c_str(), "w", stdout); freopen((name + ".out").c_str(), "w", stderr); #endif } template<typename T> T mod_inv_in_range(T a, T m) { // assert(0 <= a && a < m); T x = a, y = m; T vx = 1, vy = 0; while (x) { T k = y / x; y %= x; vy -= k * vx; std::swap(x, y); std::swap(vx, vy); } assert(y == 1); return vy < 0 ? m + vy : vy; } template<int MOD_> struct modnum { static constexpr int MOD = MOD_; static_assert(MOD_ > 0, "MOD must be positive"); private: using ll = long long; int v; public: modnum() : v(0) {} modnum(ll v_) : v(int(v_ % MOD)) { if (v < 0) v += MOD; } explicit operator int() const { return v; } friend std::ostream &operator<<(std::ostream &out, const modnum &n) { return out << int(n); } friend std::istream &operator>>(std::istream &in, modnum &n) { ll v_; in >> v_; n = modnum(v_); return in; } friend bool operator==(const modnum &a, const modnum &b) { return a.v == b.v; } friend bool operator!=(const modnum &a, const modnum &b) { return a.v != b.v; } modnum inv() const { modnum res; res.v = mod_inv_in_range(v, MOD); return res; } friend modnum inv(const modnum &m) { return m.inv(); } modnum neg() const { modnum res; res.v = v ? MOD - v : 0; return res; } friend modnum neg(const modnum &m) { return m.neg(); } modnum operator-() const { return neg(); } modnum operator+() const { return modnum(*this); } modnum &operator++() { v++; if (v == MOD) v = 0; return *this; } modnum &operator--() { if (v == 0) v = MOD; v--; return *this; } modnum &operator+=(const modnum &o) { v -= MOD - o.v; v = (v < 0) ? v + MOD : v; return *this; } modnum &operator-=(const modnum &o) { v -= o.v; v = (v < 0) ? v + MOD : v; return *this; } modnum &operator*=(const modnum &o) { v = int(ll(v) * ll(o.v) % MOD); return *this; } modnum &operator/=(const modnum &o) { return *this *= o.inv(); } friend modnum operator++(modnum &a, int) { modnum r = a; ++a; return r; } friend modnum operator--(modnum &a, int) { modnum r = a; --a; return r; } friend modnum operator+(const modnum &a, const modnum &b) { return modnum(a) += b; } friend modnum operator-(const modnum &a, const modnum &b) { return modnum(a) -= b; } friend modnum operator*(const modnum &a, const modnum &b) { return modnum(a) *= b; } friend modnum operator/(const modnum &a, const modnum &b) { return modnum(a) /= b; } }; const int inf = 0x3f3f3f3f, mod = 1e9 + 7, maxn = 105, maxl = 1005; const long long INFL = 0x3f3f3f3f3f3f3f3f; modnum<mod> dp[maxn][maxn][maxl][3]; /* dp[i][j][k][l] : i - number of numbers placed j - number of connected components k - total sum currently (filling empty spaces with a_{i} (0-indexed) l - number of endpoints that are filled */ int main() { setIO("1"); int n, l; cin >> n >> l; vector<int> a(n); for (int i = 0; i < n; ++i) { cin >> a[i]; } if (n == 1) { cout << 1 << "\n"; return 0; } sort(a.begin(), a.end()); a.push_back(inf); if (a[1] - a[0] <= l) { dp[1][1][a[1] - a[0]][1] = 2; //fill a[0] at one of the endpoints, there are 2 endpoints to fill. } if (2 * (a[1] - a[0]) <= l) { dp[1][1][2 * (a[1] - a[0])][0] = 1; //fill a[0] in the middle, positions doesn't matter. } for (int i = 1; i < n; i++) { int diff = a[i + 1] - a[i]; //this thing is "INF" if i = n - 1. for (int j = 1; j <= i; j++) { for (int k = 0; k <= l; k++) { for (int z = 0; z < 3; z++) { modnum<mod> cur = dp[i][j][k][z]; if (cur == 0) continue; //this value does not exist //First, we try to fill one of the ends int new_k = k + diff * (2 * j - z - 1); //there are 2*j - z - 1 positions that we're supposed to "upgrade" (-1 because one of the positions is merged with the endpoints after this move) if (z < 2 && new_k <= l) { if (i == n - 1) { dp[i + 1][j][new_k][z + 1] += cur * (2 - z) * j; //we have j con. comp. to choose to merge with } else if (z == 0 || j > 1) //otherwise this coincides with i == n - 1 { dp[i + 1][j][new_k][z + 1] += cur * (2 - z) * (j - z); //can only merge with the con comp. that are not connected to ends. } if (k + diff * (2 * j - z + 1) <= l) //now we create a new cc. { dp[i + 1][j + 1][k + diff * (2 * j - z + 1)][z + 1] += cur * (2 - z); //we can choose one of the ends to create } } //Next, we dont fill the ends. //Part 1 : Create new cc new_k = k + diff * (2 * j - z + 2); if (new_k <= l) //2 new positions to "upgrade" { dp[i + 1][j + 1][new_k][z] += cur; //nothing new happens } //Part 2 : Stick to one cc new_k = k + diff * (2 * j - z); if (new_k <= l) //no new positions to "upgrade" { dp[i + 1][j][new_k][z] += cur * (2 * j - z); //we can merge in 2*j - z possible positions } //Part 3 : Merge two ccs together new_k = k + diff * (2 * j - z - 2); if ((new_k <= l) && (j >= 2) && (i == n - 1 || j > 2 || z < 2)) { if (z == 0) { dp[i + 1][j - 1][new_k][z] += cur * j * (j - 1); //there are jP2 possible merges } if (z == 1) { dp[i + 1][j - 1][new_k][z] += cur * (j - 1) * (j - 1); //there are (j-1)P2+(j-1) merges } if (z == 2) { if (i == n - 1) { dp[i + 1][j - 1][new_k][z] += cur; //there's only 1 place it can go. } else { dp[i + 1][j - 1][new_k][z] += cur * (j - 2) * (j - 1); //there're (j-2)P2 + 2(j-2) possiblilities } } } } } } } modnum<mod> answer = 0; for (int i = 0; i <= l; i++) { answer += dp[n][1][i][2]; //sum the dp values for all possible sums } cout << answer << '\n'; return 0; }
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...