Submission #445855

# Submission time Handle Problem Language Result Execution time Memory
445855 2021-07-19T22:54:02 Z rainboy Sky Walking (IOI19_walk) C++14
24 / 100
518 ms 92016 KB
#include "walk.h"
#include <stdlib.h>
#include <string.h>

using namespace std;

typedef vector<int> vi;

const int N = 100000, M = 100000, N_ = 1 << 18, N1 = 4000000, M_ = 4000000;	/* N_ = pow2(ceil(log2(N))) */
const long long INF = 0x3f3f3f3f3f3f3f3f;

long long min(long long a, long long b) { return a < b ? a : b; }

unsigned int X = 12345;

int rand_() {
	return (X *= 3) >> 1;
}

int ii[N], hh[M * 2];

int *aa;

void sort(int *ii, int l, int r) {
	while (l < r) {
		int i = l, j = l, k = r, i_ = ii[l + rand_() % (r - l)], tmp;

		while (j < k)
			if (aa[ii[j]] == aa[i_])
				j++;
			else if (aa[ii[j]] < aa[i_]) {
				tmp = ii[i], ii[i] = ii[j], ii[j] = tmp;
				i++, j++;
			} else {
				k--;
				tmp = ii[j], ii[j] = ii[k], ii[k] = tmp;
			}
		sort(ii, l, i);
		l = k;
	}
}

int ij[M_], ww[M_], m_;
int *eh[N1], eo[N1], n_;

void append(int i, int h) {
	int o = eo[i]++;

	if (o >= 2 && (o & o - 1) == 0)
		eh[i] = (int *) realloc(eh[i], o * 2 * sizeof *eh[i]);
	eh[i][o] = h;
}

int newnode() {
	eh[n_] = (int *) malloc(2 * sizeof *eh[n_]);
	return n_++;
}

void add(int i, int j, int w) {
	int h = m_++;

	ij[h] = i ^ j, ww[h] = w;
	append(i, h), append(j, h);
}

int pp[N], qq[N], top[N], yy1[N];

void push(int i, int y) {
	int t = newnode();

	add(top[i], t, y - yy1[i]);
	top[i] = t, yy1[i] = y;
}

long long dd[N1]; int pq[N1], iq[1 + N1], cnt;

int lt(int i, int j) {
	return dd[i] < dd[j];
}

int p2(int p) {
	return (p *= 2) > cnt ? 0 : (p < cnt && lt(iq[p + 1], iq[p]) ? p + 1 : p);
}

void pq_up(int i) {
	int p, q, j;

	for (p = pq[i]; (q = p / 2) && lt(i, j = iq[q]); p = q)
		iq[pq[j] = p] = j;
	iq[pq[i] = p] = i;
}

void pq_dn(int i) {
	int p, q, j;

	for (p = pq[i]; (q = p2(p)) && lt(j = iq[q], i); p = q)
		iq[pq[j] = p] = j;
	iq[pq[i] = p] = i;
}

void pq_add_last(int i) {
	iq[pq[i] = ++cnt] = i;
}

int pq_remove_first() {
	int i = iq[1], j = iq[cnt--];

	if (j != i)
		pq[j] = 1, pq_dn(j);
	pq[i] = 0;
	return i;
}

long long dijkstra(int s, int t) {
	memset(dd, 0x3f, n_ * sizeof *dd);
	dd[s] = 0, pq_add_last(s);
	while (cnt) {
		int i = pq_remove_first(), o;

		if (i == t)
			return dd[i];
		for (o = eo[i]; o--; ) {
			int h = eh[i][o], j = i ^ ij[h];
			long long d = dd[i] + ww[h];

			if (dd[j] > d) {
				if (dd[j] == INF)
					pq_add_last(j);
				dd[j] = d, pq_up(j);
			}
		}
	}
	return -1;
}

int xx[N], yy[N], ll[M], rr[M], xx1[M * 2], zz[M], idx[M], zz1[M];

long long solve_using_dijkstra(vi xx_, vi yy_, vi ll_, vi rr_, vi zz_, int s, int t) {
	int n = xx_.size(), m = zz_.size(), h, i;

	for (i = 0; i < n; i++) {
		xx[i] = xx_[i], yy[i] = yy_[i];
		ii[i] = i;
	}
	aa = yy, sort(ii, 0, n);
	for (h = 0; h < m; h++) {
		ll[h] = ll_[h], rr[h] = rr_[h], zz[h] = zz_[h];
		hh[h] = h;
	}
	aa = zz, sort(hh, 0, m);
	for (i = 0; i < n; i++) {
		pp[i] = i - 1, qq[i] = i + 1;
		top[i] = newnode(), yy1[i] = 0;
	}
	for (h = 0, i = 0; h < m; h++) {
		int h_ = hh[h], i_;

		while (i < n && yy[i_ = ii[i]] < zz[h_]) {
			if (pp[i_] != -1)
				qq[pp[i_]] = qq[i_];
			if (qq[i_] != n)
				pp[qq[i_]] = pp[i_];
			i++;
		}
		for (i_ = ll[h_]; i_ != rr[h_]; i_ = qq[i_])
			push(i_, zz[h_]);
		push(i_, zz[h_]);
		for (i_ = ll[h_]; i_ != rr[h_]; i_ = qq[i_])
			add(top[i_], top[qq[i_]], xx[qq[i_]] - xx[i_]);
	}
	for (i = 0; i < n; i++)
		push(i, yy[i]);
	return dijkstra(s, t);
}

long long st1[N_ * 2], st2[N_ * 2];

void pul(int i) {
	int l = i << 1, r = l | 1;

	st1[i] = min(st1[l], st1[r]), st2[i] = min(st2[l], st2[r]);
}

void update(int i, long long x) {
	if (x == INF)
		st1[n_ + i] = st2[n_ + i] = INF;
	else
		st1[n_ + i] = x - zz1[i], st2[n_ + i] = x + zz1[i];
	i += n_;
	while (i > 1)
		pul(i >>= 1);
}

long long query(int i) {
	long long x, y;
	int l, r;

	x = INF;
	for (l = 0 + n_, r = i + n_; l <= r; l >>= 1, r >>= 1) {
		if ((l & 1) == 1)
			x = min(x, st1[l++]);
		if ((r & 1) == 0)
			x = min(x, st1[r--]);
	}
	y = INF;
	for (l = i + n_, r = n_ - 1 + n_; l <= r; l >>= 1, r >>= 1) {
		if ((l & 1) == 1)
			y = min(y, st2[l++]);
		if ((r & 1) == 0)
			y = min(y, st2[r--]);
	}
	return min(x == INF ? INF : x + zz1[i], y == INF ? INF : y - zz1[i]);
}

long long dp[M];

long long solve_using_segtree(vi xx_, vi ll_, vi rr_, vi zz_) {
	long long ans;
	int n = xx_.size(), m = zz_.size(), h, i;

	for (i = 0; i < n; i++)
		xx[i] = xx_[i];
	for (h = 0; h < m; h++) {
		ll[h] = ll_[h], rr[h] = rr_[h], zz[h] = zz_[h];
		hh[h] = h;
	}
	aa = zz, sort(hh, 0, m);
	for (h = 0; h < m; h++)
		idx[hh[h]] = h, zz1[h] = zz[hh[h]];
	for (h = 0; h < m * 2; h++) {
		xx1[h] = (h & 1) == 0 ? ll[h >> 1] << 1 | 0 : rr[h >> 1] << 1 | 1;
		hh[h] = h;
	}
	aa = xx1, sort(hh, 0, m * 2);
	n_ = 1;
	while (n_ < m)
		n_ <<= 1;
	memset(st1, 0x3f, n_ * 2 * sizeof *st1), memset(st2, 0x3f, n_ * 2 * sizeof *st2);
	ans = INF;
	for (h = 0; h < m * 2; h++) {
		int h_ = hh[h] >> 1;

		if ((hh[h] & 1) == 0)
			dp[h_] = xx1[hh[h]] == 0 ? zz[h_] : query(idx[h_]), update(idx[h_], dp[h_]);
		else {
			update(idx[h_], INF);
			if (xx1[hh[h]] == (n - 1 << 1 | 1))
				ans = min(ans, dp[h_] + zz[h_] + xx[n - 1] - xx[0]);
		}
	}
	return ans;
}

long long min_distance(vi xx_, vi yy_, vi ll_, vi rr_, vi zz_, int s, int t) {
	int n = xx_.size();

	return s == 0 && t == n - 1 ? solve_using_segtree(xx_, ll_, rr_, zz_) : solve_using_dijkstra(xx_, yy_, ll_, rr_, zz_, s, t);
}

Compilation message

walk.cpp: In function 'void append(int, int)':
walk.cpp:49:23: warning: suggest parentheses around '-' in operand of '&' [-Wparentheses]
   49 |  if (o >= 2 && (o & o - 1) == 0)
      |                     ~~^~~
walk.cpp: In function 'long long int solve_using_segtree(vi, vi, vi, vi)':
walk.cpp:247:25: warning: suggest parentheses around '-' inside '<<' [-Wparentheses]
  247 |    if (xx1[hh[h]] == (n - 1 << 1 | 1))
      |                       ~~^~~
# Verdict Execution time Memory Grader output
1 Correct 1 ms 332 KB Output is correct
2 Correct 0 ms 292 KB Output is correct
3 Correct 0 ms 332 KB Output is correct
4 Correct 1 ms 332 KB Output is correct
5 Correct 1 ms 332 KB Output is correct
6 Correct 1 ms 416 KB Output is correct
7 Correct 1 ms 332 KB Output is correct
8 Correct 1 ms 332 KB Output is correct
9 Correct 1 ms 332 KB Output is correct
10 Correct 1 ms 332 KB Output is correct
11 Correct 1 ms 332 KB Output is correct
12 Correct 1 ms 332 KB Output is correct
13 Correct 1 ms 332 KB Output is correct
14 Correct 1 ms 332 KB Output is correct
15 Correct 0 ms 280 KB Output is correct
16 Correct 0 ms 284 KB Output is correct
17 Correct 1 ms 332 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 332 KB Output is correct
2 Correct 0 ms 332 KB Output is correct
3 Correct 160 ms 53588 KB Output is correct
4 Correct 444 ms 70956 KB Output is correct
5 Correct 199 ms 59636 KB Output is correct
6 Correct 202 ms 54524 KB Output is correct
7 Correct 212 ms 59892 KB Output is correct
8 Correct 236 ms 69448 KB Output is correct
9 Correct 266 ms 60024 KB Output is correct
10 Correct 518 ms 92016 KB Output is correct
11 Correct 170 ms 36032 KB Output is correct
12 Correct 181 ms 14716 KB Output is correct
13 Correct 169 ms 14704 KB Output is correct
14 Correct 139 ms 33040 KB Output is correct
15 Correct 159 ms 35708 KB Output is correct
16 Correct 200 ms 35012 KB Output is correct
17 Correct 170 ms 34068 KB Output is correct
18 Correct 106 ms 14756 KB Output is correct
19 Correct 6 ms 2124 KB Output is correct
20 Correct 63 ms 17556 KB Output is correct
21 Correct 143 ms 14160 KB Output is correct
22 Correct 156 ms 14808 KB Output is correct
23 Correct 150 ms 14732 KB Output is correct
24 Correct 144 ms 14536 KB Output is correct
25 Correct 139 ms 14276 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 52 ms 6524 KB Output is correct
2 Correct 131 ms 12336 KB Output is correct
3 Correct 139 ms 14532 KB Output is correct
4 Correct 186 ms 18672 KB Output is correct
5 Correct 181 ms 18632 KB Output is correct
6 Correct 171 ms 18740 KB Output is correct
7 Correct 99 ms 11764 KB Output is correct
8 Correct 217 ms 18628 KB Output is correct
9 Correct 168 ms 18636 KB Output is correct
10 Correct 140 ms 17988 KB Output is correct
11 Incorrect 13 ms 2252 KB Output isn't correct
# Verdict Execution time Memory Grader output
1 Correct 52 ms 6524 KB Output is correct
2 Correct 131 ms 12336 KB Output is correct
3 Correct 139 ms 14532 KB Output is correct
4 Correct 186 ms 18672 KB Output is correct
5 Correct 181 ms 18632 KB Output is correct
6 Correct 171 ms 18740 KB Output is correct
7 Correct 99 ms 11764 KB Output is correct
8 Correct 217 ms 18628 KB Output is correct
9 Correct 168 ms 18636 KB Output is correct
10 Correct 140 ms 17988 KB Output is correct
11 Incorrect 13 ms 2252 KB Output isn't correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 332 KB Output is correct
2 Correct 0 ms 292 KB Output is correct
3 Correct 0 ms 332 KB Output is correct
4 Correct 1 ms 332 KB Output is correct
5 Correct 1 ms 332 KB Output is correct
6 Correct 1 ms 416 KB Output is correct
7 Correct 1 ms 332 KB Output is correct
8 Correct 1 ms 332 KB Output is correct
9 Correct 1 ms 332 KB Output is correct
10 Correct 1 ms 332 KB Output is correct
11 Correct 1 ms 332 KB Output is correct
12 Correct 1 ms 332 KB Output is correct
13 Correct 1 ms 332 KB Output is correct
14 Correct 1 ms 332 KB Output is correct
15 Correct 0 ms 280 KB Output is correct
16 Correct 0 ms 284 KB Output is correct
17 Correct 1 ms 332 KB Output is correct
18 Correct 1 ms 332 KB Output is correct
19 Correct 0 ms 332 KB Output is correct
20 Correct 160 ms 53588 KB Output is correct
21 Correct 444 ms 70956 KB Output is correct
22 Correct 199 ms 59636 KB Output is correct
23 Correct 202 ms 54524 KB Output is correct
24 Correct 212 ms 59892 KB Output is correct
25 Correct 236 ms 69448 KB Output is correct
26 Correct 266 ms 60024 KB Output is correct
27 Correct 518 ms 92016 KB Output is correct
28 Correct 170 ms 36032 KB Output is correct
29 Correct 181 ms 14716 KB Output is correct
30 Correct 169 ms 14704 KB Output is correct
31 Correct 139 ms 33040 KB Output is correct
32 Correct 159 ms 35708 KB Output is correct
33 Correct 200 ms 35012 KB Output is correct
34 Correct 170 ms 34068 KB Output is correct
35 Correct 106 ms 14756 KB Output is correct
36 Correct 6 ms 2124 KB Output is correct
37 Correct 63 ms 17556 KB Output is correct
38 Correct 143 ms 14160 KB Output is correct
39 Correct 156 ms 14808 KB Output is correct
40 Correct 150 ms 14732 KB Output is correct
41 Correct 144 ms 14536 KB Output is correct
42 Correct 139 ms 14276 KB Output is correct
43 Correct 52 ms 6524 KB Output is correct
44 Correct 131 ms 12336 KB Output is correct
45 Correct 139 ms 14532 KB Output is correct
46 Correct 186 ms 18672 KB Output is correct
47 Correct 181 ms 18632 KB Output is correct
48 Correct 171 ms 18740 KB Output is correct
49 Correct 99 ms 11764 KB Output is correct
50 Correct 217 ms 18628 KB Output is correct
51 Correct 168 ms 18636 KB Output is correct
52 Correct 140 ms 17988 KB Output is correct
53 Incorrect 13 ms 2252 KB Output isn't correct