#include <cstdio>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long long i64;
typedef double Double;
typedef pair<Double, Double> Pt;
const int MAXN = 200;
const int INFT = 1001001001;
const Double EPS = 1e-9;
int N, C;
int Ax[MAXN], Ay[MAXN], Bx[MAXN], By[MAXN];
Pt A[MAXN], B[MAXN];
Double cost[MAXN * 2][MAXN * 2];
bool isok(Double xa, Double ya, Double xb, Double yb, Double x, Double ylo, Double yhi)
{
if (xb < xa) {
swap(xa, xb);
swap(ya, yb);
}
if (!(EPS < x - xa && EPS < xb - x)) return true;
Double y = (x - xa) / (xb - xa) * (yb - ya) + ya;
return !(EPS < y - ylo && EPS < yhi - y);
}
double triangle(Double xa, Double ya, Double xb, Double yb, Double xc, Double yc)
{
xb -= xa; yb -= ya;
xc -= xa; yc -= ya;
return xb * yc - yb * xc;
}
bool cross(Pt a, Pt b, Pt c, Pt d)
{
return
triangle(a.first, a.second, b.first, b.second, c.first, c.second) * triangle(a.first, a.second, b.first, b.second, d.first, d.second) < 0
&& triangle(c.first, c.second, d.first, d.second, a.first, a.second) * triangle(c.first, c.second, d.first, d.second, b.first, b.second) < 0;
}
bool isok(Pt a, Pt b)
{
Double Cc = C;
if (cross(a, b, { -Cc, -Cc }, { -Cc, Cc })) return false;
if (cross(a, b, { -Cc, -Cc }, { Cc, -Cc })) return false;
if (cross(a, b, { Cc, Cc }, { -Cc, Cc })) return false;
if (cross(a, b, { Cc, Cc }, { Cc, -Cc })) return false;
if (cross(a, b, { -Cc, -Cc }, { 0, Cc })) return false;
if (cross(a, b, { Cc, -Cc }, { 0, Cc })) return false;
if (-Cc + EPS < a.first && a.first < Cc - EPS && -Cc + EPS < a.second && a.second < Cc - EPS) return false;
if (-Cc + EPS < b.first && b.first < Cc - EPS && -Cc + EPS < b.second && b.second < Cc - EPS) return false;
return true;
}
bool cross(Pt a, Pt b)
{
if (b.first < a.first) swap(a, b);
if (!(!(EPS < a.first) && EPS < b.first)) return false;
Double y = (0 - a.first) / (b.first - a.first) * (b.second - a.second) + a.second;
return 0 < y;
}
Double check(Pt a, Pt b)
{
if (!isok(a, b)) return INFT;
Double dd = (b.first - a.first) * (b.first - a.first) + (b.second - a.second) * (b.second - a.second);
return sqrt(dd);
}
Pt sd(Pt a, Pt b, Pt x)
{
Pt aa(b.first - a.first, b.second - a.second);
if (fabs(aa.first) < EPS && fabs(aa.second) < EPS) return a;
Pt xa(x.first - a.first, x.second - a.second);
Double t = (aa.first * xa.first + aa.second * xa.second) / (aa.first * aa.first + aa.second * aa.second);
if (t < -EPS || 1 + EPS < t) return a;
return{ a.first + aa.first * t, a.second + aa.second * t };
}
Double dd[12][12];
void apply(int s, int t, Pt a, Pt b, Pt abase, Pt bbase)
{
Double dist = check(a, b);
bool sgn = cross(abase, a) ^ cross(a, b) ^ cross(b, bbase);
if (sgn) {
dd[s * 2][t * 2 + 1] = min(dd[s * 2][t * 2 + 1], dist);
dd[s * 2 + 1][t * 2] = dd[t * 2][s * 2 + 1] = dd[t * 2 + 1][s * 2] = dd[s * 2][t * 2 + 1];
} else {
dd[s * 2][t * 2] = min(dd[s * 2][t * 2], dist);
dd[s * 2 + 1][t * 2 + 1] = dd[t * 2][s * 2] = dd[t * 2 + 1][s * 2 + 1] = dd[s * 2][t * 2];
}
}
pair<Double, Double> compute(int u, int v)
{
for (int i = 0; i < 12; ++i) {
for (int j = 0; j < 12; ++j) {
dd[i][j] = (i == j ? 0.0 : INFT);
}
}
Pt corner[4] = {
{-C, -C},
{-C, C},
{C, -C},
{C, C}
};
apply(0, 1, A[u], A[v], A[u], A[v]);
apply(0, 1, A[u], B[v], A[u], A[v]);
apply(0, 1, B[u], A[v], A[u], A[v]);
apply(0, 1, B[u], B[v], A[u], A[v]);
apply(0, 1, A[u], sd(A[v], B[v], A[u]), A[u], A[v]);
apply(0, 1, B[u], sd(A[v], B[v], B[u]), A[u], A[v]);
apply(0, 1, A[v], sd(A[u], B[u], A[v]), A[v], A[u]);
apply(0, 1, B[v], sd(A[u], B[u], B[v]), A[v], A[u]);
for (int i = 0; i < 6; ++i) {
for (int j = i + 1; j < 6; ++j) {
if (i == 0 && j == 1) continue;
if (i < 2) {
int n = (i == 0 ? u : v);
apply(i, j, A[n], corner[j - 2], A[n], corner[j - 2]);
apply(i, j, B[n], corner[j - 2], A[n], corner[j - 2]);
apply(i, j, sd(A[n], B[n], corner[j - 2]), corner[j - 2], A[n], corner[j - 2]);
} else {
apply(i, j, corner[i - 2], corner[j - 2], corner[i - 2], corner[j - 2]);
}
}
}
for (int i = 0; i < 12; ++i) {
for (int j = 0; j < 12; ++j) {
for (int k = 0; k < 12; ++k) {
dd[j][k] = min(dd[j][k], dd[j][i] + dd[i][k]);
}
}
}
return{ dd[0][2], dd[0][3] };
}
int main()
{
scanf("%d%d", &N, &C);
for (int i = 0; i < N; ++i) {
scanf("%d%d%d%d", Ax + i, Ay + i, Bx + i, By + i);
A[i] = make_pair(Double(Ax[i]), Double(Ay[i]));
B[i] = make_pair(Double(Bx[i]), Double(By[i]));
}
for (int i = 0; i < 2 * N; ++i) {
for (int j = 0; j < 2 * N; ++j) {
cost[i][j] = (i == j ? 0 : INFT);
}
}
for (int i = 0; i < N; ++i) {
for (int j = 0; j < N; ++j) {
auto dist = compute(i, j);
cost[i * 2][j * 2] = cost[i * 2 + 1][j * 2 + 1] = dist.first;
cost[i * 2 + 1][j * 2] = cost[i * 2][j * 2 + 1] = dist.second;
}
}
for (int i = 0; i < 2 * N; ++i) {
for (int j = 0; j < 2 * N; ++j) {
for (int k = 0; k < 2 * N; ++k) {
cost[j][k] = min(cost[j][k], cost[j][i] + cost[i][k]);
}
}
}
Double ret = 8 * C;
for (int i = 0; i < N; ++i) {
ret = min(ret, cost[i * 2][i * 2 + 1]);
}
printf("%.0f\n", (double)ret);
return 0;
}
Compilation message
fences.cpp: In function 'int main()':
fences.cpp:148:7: warning: ignoring return value of 'int scanf(const char*, ...)', declared with attribute warn_unused_result [-Wunused-result]
scanf("%d%d", &N, &C);
~~~~~^~~~~~~~~~~~~~~~
fences.cpp:150:8: warning: ignoring return value of 'int scanf(const char*, ...)', declared with attribute warn_unused_result [-Wunused-result]
scanf("%d%d%d%d", Ax + i, Ay + i, Bx + i, By + i);
~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
2 ms |
376 KB |
Output is correct |
2 |
Correct |
2 ms |
472 KB |
Output is correct |
3 |
Correct |
2 ms |
484 KB |
Output is correct |
4 |
Correct |
2 ms |
484 KB |
Output is correct |
5 |
Incorrect |
2 ms |
484 KB |
Output isn't correct |
6 |
Halted |
0 ms |
0 KB |
- |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
2 ms |
376 KB |
Output is correct |
2 |
Correct |
2 ms |
472 KB |
Output is correct |
3 |
Correct |
2 ms |
484 KB |
Output is correct |
4 |
Correct |
2 ms |
484 KB |
Output is correct |
5 |
Incorrect |
2 ms |
484 KB |
Output isn't correct |
6 |
Halted |
0 ms |
0 KB |
- |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
2 ms |
376 KB |
Output is correct |
2 |
Correct |
2 ms |
472 KB |
Output is correct |
3 |
Correct |
2 ms |
484 KB |
Output is correct |
4 |
Correct |
2 ms |
484 KB |
Output is correct |
5 |
Incorrect |
2 ms |
484 KB |
Output isn't correct |
6 |
Halted |
0 ms |
0 KB |
- |