Submission #436292

# Submission time Handle Problem Language Result Execution time Memory
436292 2021-06-24T11:41:18 Z dacin21 Keys (IOI21_keys) C++17
100 / 100
2487 ms 343412 KB
#pragma GCC optimize("O3")
#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx") // codeforces
//#pragma GCC target("avx,avx2,fma")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,tune=native") // yandex

#undef _GLIBCXX_DEBUG
#include <bits/stdc++.h>
using namespace std;

uint64_t steps = 0;
uint64_t steps_2 = 0;

struct Node{
    int me = -2, next = -1;
};
// first node is sentinel
vector<Node> nodes{Node{-1, 0}};

struct Edge_Component{
    int key;
    vector<int> vertices;
};
vector<Edge_Component> edge_components;

template<typename T>
void join(vector<T> &a, vector<T> &b){
    if(a.size() < b.size()){
        a.swap(b);
    }
    steps_2 += b.size();
    a.insert(a.end(), b.begin(), b.end());
    b.clear();
}

void list_join(pair<int, int> &a, pair<int, int> b){
    // 0, 0 is invalid empty list
    if(a.first == 0 && a.second == 0){
        a = b;
        return;
    }
    nodes[a.second].next = b.first;
    a.second = b.second;
}
struct Component{
    vector<int> vertices;
    unordered_set<int> keys;
    unordered_map<int, int> edge_pos;
    // pair<first_node, last_node>
    unordered_map<int, pair<int, int> > reachable_edges;
    unordered_map<int, pair<int, int> > unreachable_edges;


    template<typename T>
    bool search(T callback){
        while(!reachable_edges.empty()){
            auto it = reachable_edges.begin();
            Node u = nodes[it->second.first];
            while(u.me != -1){
                auto p = u.me;
                auto &pos = edge_pos[p];
                auto const&vv = edge_components[p].vertices;
                while(pos < (int)vv.size()){
                    if(callback(vv[pos])) return true;
                    ++pos;
                }
                it->second.first = u.next;
                u = nodes[u.next];
            }
            reachable_edges.erase(it);
        }
        return false;
    }
    void add_key(int c){
        if(!keys.count(c)){
            keys.insert(c);
            if(unreachable_edges.count(c)){
                auto &v = reachable_edges[c];
                auto &w = unreachable_edges[c];
                list_join(v, w);
                unreachable_edges.erase(c);
            }
        }
    }
    size_t size(){
        return reachable_edges.size() + unreachable_edges.size() + keys.size() /*+edge_pos.size()*/;
    }
    void absorb(Component &o){
        join(vertices, o.vertices);
        for(auto &e:o.reachable_edges){
            ++steps;
            list_join(reachable_edges[e.first], e.second);
        }
        for(auto &e:o.unreachable_edges){
            ++steps;
            if(keys.count(e.first)){
                list_join(reachable_edges[e.first], e.second);
            } else {
                list_join(unreachable_edges[e.first], e.second);
            }
        }
        for(auto &e:o.keys){
            ++steps;
            add_key(e);
        }
        if(edge_pos.size() < o.edge_pos.size()){
            edge_pos.swap(o.edge_pos);
        }
        for(auto const&e:o.edge_pos){
            ++steps;
            auto &f = edge_pos[e.first];
            f = max(f, e.second);
        }
    }
};

struct DSU{
    DSU(int n_) : n(n_), p(n, -1), comps(n){

    }
    int f(int x){
        ++steps_2;
        return p[x] < 0 ? x : p[x] = f(p[x]);
    }
    Component& c(int x){
        return comps[f(x)];
    }
    bool u(int a, int b){
        ++steps;
        a = f(a);
        b = f(b);
        if(a == b) return false;
        if(comps[a].size() < comps[b].size()){
            swap(a, b);
        }
        comps[a].absorb(comps[b]);
        p[b] = a;
        return true;
    }

    int n;
    vector<int> p;
    vector<Component> comps;

};

vector<int> find_reachable(vector<int> r, vector<int> u, vector<int> v, vector<int> c) {
    #ifdef LOCAL_RUN
    auto time_a = chrono::high_resolution_clock::now();
    #endif
    const int m = u.size();
    const int n = r.size();
    unordered_map<int, vector<int> > c_inv;
    c_inv.reserve(1<<10);
    c_inv.max_load_factor(0.25);
    for(int i=0; i<m; ++i){
        c_inv[c[i]].push_back(i);
    }

    DSU uni(n);
    // find edge components
    edge_components.clear();
    vector<vector<int> > g(n);
    vector<int> vis(n, -1);
    int tim = -1; // = index of last edge_component

    vector<int> vert;
    vert.reserve(n);
    for(auto const&e:c_inv){
        for(auto const&f:e.second){
            g[u[f]].push_back(v[f]);
            g[v[f]].push_back(u[f]);
        }
        const int t0 = tim;
        auto rec = [&](auto rec, int u){
            ++steps;
            if(vis[u] == tim) return;
            vis[u] = tim;
            nodes.push_back(Node{tim, 0});
            list_join(uni.comps[u].unreachable_edges[e.first], make_pair(nodes.size()-1, nodes.size()-1));
            //edge_components.back().vertices.push_back(u);
            vert.push_back(u);
            for(auto const&e:g[u]){
                rec(rec, e);
            }
        };
        for(auto const&f:e.second){
            ++steps_2;
            if(vis[u[f]] <= t0){
                ++tim;
                vert.clear();
                edge_components.push_back(Edge_Component{e.first});
                rec(rec, u[f]);
                edge_components.back().vertices = vert;
            }
        }
        for(auto const&f:e.second){
            g[u[f]].pop_back();
            g[v[f]].pop_back();
        }
    }
    #ifdef LOCAL_RUN
    auto time_b = chrono::high_resolution_clock::now();
    cerr << "tmp: " << chrono::duration_cast<chrono::nanoseconds>(time_b - time_a).count()*1e-9 << "\n";
    #endif

    for(int i=0; i<n; ++i){
        uni.c(i).add_key(r[i]);
        uni.c(i).vertices.push_back(i);
    }
    #ifdef LOCAL_RUN
    auto time_c = chrono::high_resolution_clock::now();
    cerr << "go search: " << chrono::duration_cast<chrono::nanoseconds>(time_c - time_b).count()*1e-9 << "\n";;
    #endif
    pair<int, vector<int> > out(n+1, {});
    // run search
    vis.assign(n, 0);
    tim = 1;
    vector<int> to(n, -1);
    vector<int> prev(n, -1);
    for(int i=0; i<n; ++i){
        int a = uni.f(i);
        ++tim;
        if(vis[a] == 0){
            vis[a] = tim;
            prev[a] = -1;
            // find out edge
            for(;;){
                auto res = uni.comps[a].search([&](int const&v){
                    //cerr << " => " << v << "\n";
                    const int b = uni.f(v);
                    if(b == a) return false; // loop
                    if(vis[b] == 0){
                        //cerr << "move to: " << b << "\n";
                        to[a] = b;
                        prev[b] = a;
                        vis[b] = tim;
                        // continue search with b
                        a = b;
                        return true;
                    }
                    if(vis[b] == tim){
                        //cerr << "cycle " << a;
                        // extract cycle
                        int cnt = 0;
                        for(int c = b; c != a; c = to[c]){
                            //cerr << " " << c;
                            uni.u(a, c);
                            ++cnt;
                        }
                        //cerr << "cycle: " << cnt << "\n";
                        const int aa = uni.f(a);
                        if(prev[b] != -1){
                            assert(to[prev[b]] == b);
                            to[prev[b]] = aa;
                        }
                        prev[aa] = prev[b];
                        a = aa;
                        //cerr << " -> " << a << "\n";
                        to[a] = -1;
                        assert(vis[a] == tim);
                        return true;
                    }
                    // found old vertices -> finish
                    //cerr << "old " << b << "\n";
                    a = -1;
                    return true;
                });
                if(a == -1) break; // found old vertices
                if(!res){
                    auto const&v = uni.comps[a].vertices;
                    //cerr << v.size() << " : ";
                    //for(auto &e : v) cerr << e << " ";
                    //cerr << "\n";
                    if((int)v.size() < out.first){
                        out.first = v.size();
                        out.second.clear();
                    }
                    if((int)v.size() == out.first){
                        out.second.insert(out.second.end(), v.begin(), v.end());
                    }
                    break;
                }
            }

        }
    }
    vector<int> ret(n);
    for(auto const&e:out.second){
        ret[e] = 1;
    }
    #ifdef LOCAL_RUN
    auto time_d = chrono::high_resolution_clock::now();
    cerr << "done: " << chrono::duration_cast<chrono::nanoseconds>(time_d - time_c).count()*1e-9 << "\n";;
    cerr << steps << "\n";
    cerr << steps_2 << "\n";
    #endif
    return ret;
}
# Verdict Execution time Memory Grader output
1 Correct 1 ms 204 KB Output is correct
2 Correct 1 ms 204 KB Output is correct
3 Correct 1 ms 204 KB Output is correct
4 Correct 1 ms 332 KB Output is correct
5 Correct 1 ms 204 KB Output is correct
6 Correct 1 ms 204 KB Output is correct
7 Correct 1 ms 204 KB Output is correct
8 Correct 1 ms 332 KB Output is correct
9 Correct 1 ms 332 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 204 KB Output is correct
2 Correct 1 ms 204 KB Output is correct
3 Correct 1 ms 204 KB Output is correct
4 Correct 1 ms 332 KB Output is correct
5 Correct 1 ms 204 KB Output is correct
6 Correct 1 ms 204 KB Output is correct
7 Correct 1 ms 204 KB Output is correct
8 Correct 1 ms 332 KB Output is correct
9 Correct 1 ms 332 KB Output is correct
10 Correct 1 ms 460 KB Output is correct
11 Correct 1 ms 460 KB Output is correct
12 Correct 1 ms 460 KB Output is correct
13 Correct 1 ms 204 KB Output is correct
14 Correct 1 ms 204 KB Output is correct
15 Correct 1 ms 460 KB Output is correct
16 Correct 1 ms 204 KB Output is correct
17 Correct 1 ms 204 KB Output is correct
18 Correct 1 ms 332 KB Output is correct
19 Correct 1 ms 204 KB Output is correct
20 Correct 1 ms 284 KB Output is correct
21 Correct 1 ms 460 KB Output is correct
22 Correct 1 ms 332 KB Output is correct
23 Correct 1 ms 460 KB Output is correct
24 Correct 1 ms 460 KB Output is correct
25 Correct 1 ms 460 KB Output is correct
26 Correct 1 ms 460 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 204 KB Output is correct
2 Correct 1 ms 204 KB Output is correct
3 Correct 1 ms 204 KB Output is correct
4 Correct 1 ms 332 KB Output is correct
5 Correct 1 ms 204 KB Output is correct
6 Correct 1 ms 204 KB Output is correct
7 Correct 1 ms 204 KB Output is correct
8 Correct 1 ms 332 KB Output is correct
9 Correct 1 ms 332 KB Output is correct
10 Correct 1 ms 460 KB Output is correct
11 Correct 1 ms 460 KB Output is correct
12 Correct 1 ms 460 KB Output is correct
13 Correct 1 ms 204 KB Output is correct
14 Correct 1 ms 204 KB Output is correct
15 Correct 1 ms 460 KB Output is correct
16 Correct 1 ms 204 KB Output is correct
17 Correct 1 ms 204 KB Output is correct
18 Correct 1 ms 332 KB Output is correct
19 Correct 1 ms 204 KB Output is correct
20 Correct 1 ms 284 KB Output is correct
21 Correct 1 ms 460 KB Output is correct
22 Correct 1 ms 332 KB Output is correct
23 Correct 1 ms 460 KB Output is correct
24 Correct 1 ms 460 KB Output is correct
25 Correct 1 ms 460 KB Output is correct
26 Correct 1 ms 460 KB Output is correct
27 Correct 6 ms 2304 KB Output is correct
28 Correct 7 ms 2232 KB Output is correct
29 Correct 6 ms 2252 KB Output is correct
30 Correct 4 ms 1356 KB Output is correct
31 Correct 2 ms 972 KB Output is correct
32 Correct 2 ms 588 KB Output is correct
33 Correct 3 ms 1100 KB Output is correct
34 Correct 3 ms 1356 KB Output is correct
35 Correct 4 ms 1228 KB Output is correct
36 Correct 6 ms 1960 KB Output is correct
37 Correct 6 ms 2252 KB Output is correct
38 Correct 7 ms 2444 KB Output is correct
39 Correct 8 ms 2636 KB Output is correct
40 Correct 4 ms 1384 KB Output is correct
41 Correct 4 ms 1512 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 204 KB Output is correct
2 Correct 1 ms 204 KB Output is correct
3 Correct 1 ms 204 KB Output is correct
4 Correct 1 ms 332 KB Output is correct
5 Correct 1 ms 204 KB Output is correct
6 Correct 1 ms 204 KB Output is correct
7 Correct 1 ms 204 KB Output is correct
8 Correct 1 ms 332 KB Output is correct
9 Correct 1 ms 332 KB Output is correct
10 Correct 1249 ms 125420 KB Output is correct
11 Correct 1552 ms 280408 KB Output is correct
12 Correct 352 ms 54592 KB Output is correct
13 Correct 2259 ms 284644 KB Output is correct
14 Correct 734 ms 283092 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 204 KB Output is correct
2 Correct 1 ms 204 KB Output is correct
3 Correct 1 ms 204 KB Output is correct
4 Correct 1 ms 332 KB Output is correct
5 Correct 1 ms 204 KB Output is correct
6 Correct 1 ms 204 KB Output is correct
7 Correct 1 ms 204 KB Output is correct
8 Correct 1 ms 332 KB Output is correct
9 Correct 1 ms 332 KB Output is correct
10 Correct 1 ms 460 KB Output is correct
11 Correct 1 ms 460 KB Output is correct
12 Correct 1 ms 460 KB Output is correct
13 Correct 1 ms 204 KB Output is correct
14 Correct 1 ms 204 KB Output is correct
15 Correct 1 ms 460 KB Output is correct
16 Correct 1 ms 204 KB Output is correct
17 Correct 1 ms 204 KB Output is correct
18 Correct 1 ms 332 KB Output is correct
19 Correct 1 ms 204 KB Output is correct
20 Correct 1 ms 284 KB Output is correct
21 Correct 1 ms 460 KB Output is correct
22 Correct 1 ms 332 KB Output is correct
23 Correct 1 ms 460 KB Output is correct
24 Correct 1 ms 460 KB Output is correct
25 Correct 1 ms 460 KB Output is correct
26 Correct 1 ms 460 KB Output is correct
27 Correct 6 ms 2304 KB Output is correct
28 Correct 7 ms 2232 KB Output is correct
29 Correct 6 ms 2252 KB Output is correct
30 Correct 4 ms 1356 KB Output is correct
31 Correct 2 ms 972 KB Output is correct
32 Correct 2 ms 588 KB Output is correct
33 Correct 3 ms 1100 KB Output is correct
34 Correct 3 ms 1356 KB Output is correct
35 Correct 4 ms 1228 KB Output is correct
36 Correct 6 ms 1960 KB Output is correct
37 Correct 6 ms 2252 KB Output is correct
38 Correct 7 ms 2444 KB Output is correct
39 Correct 8 ms 2636 KB Output is correct
40 Correct 4 ms 1384 KB Output is correct
41 Correct 4 ms 1512 KB Output is correct
42 Correct 1249 ms 125420 KB Output is correct
43 Correct 1552 ms 280408 KB Output is correct
44 Correct 352 ms 54592 KB Output is correct
45 Correct 2259 ms 284644 KB Output is correct
46 Correct 734 ms 283092 KB Output is correct
47 Correct 1 ms 204 KB Output is correct
48 Correct 1 ms 204 KB Output is correct
49 Correct 1 ms 204 KB Output is correct
50 Correct 713 ms 293852 KB Output is correct
51 Correct 835 ms 293564 KB Output is correct
52 Correct 1239 ms 206024 KB Output is correct
53 Correct 1181 ms 206224 KB Output is correct
54 Correct 1246 ms 206196 KB Output is correct
55 Correct 1444 ms 137496 KB Output is correct
56 Correct 1552 ms 257300 KB Output is correct
57 Correct 929 ms 207808 KB Output is correct
58 Correct 1657 ms 343412 KB Output is correct
59 Correct 2389 ms 264228 KB Output is correct
60 Correct 2190 ms 268864 KB Output is correct
61 Correct 2298 ms 269512 KB Output is correct
62 Correct 2205 ms 286412 KB Output is correct
63 Correct 780 ms 223680 KB Output is correct
64 Correct 13 ms 5068 KB Output is correct
65 Correct 13 ms 5068 KB Output is correct
66 Correct 2202 ms 286420 KB Output is correct
67 Correct 79 ms 28612 KB Output is correct
68 Correct 129 ms 47572 KB Output is correct
69 Correct 2487 ms 264256 KB Output is correct
70 Correct 299 ms 94784 KB Output is correct
71 Correct 730 ms 283100 KB Output is correct
72 Correct 2426 ms 264240 KB Output is correct
73 Correct 2127 ms 286436 KB Output is correct