Submission #436022

# Submission time Handle Problem Language Result Execution time Memory
436022 2021-06-24T05:36:03 Z ocarima Keys (IOI21_keys) C++17
100 / 100
1390 ms 125016 KB
#include <vector>
#include <bits/stdc++.h>

using namespace std;

#define lli long long
#define rep(i, a, b) for(lli i = (a); i <= (b); ++i)
#define repa(i, a, b) for(lli i = (a); i >= (b); --i)

#define nl "\n"
#define debugsl(x) cout << #x << " = " << x << ", "
#define debug(x) debugsl(x) << nl
#define debugarr(x, a, b) cout << #x << " = ["; rep(ii, a, b) cout << x[ii] << ", "; cout << "]" << nl

#define MAX_N 300002

#define destino first
#define tipo second

vector<pair<int, int> > hijos[MAX_N];
vector<int> nodosciclo[MAX_N];
int visitado[MAX_N], ciclo[MAX_N], cicloprocesado[MAX_N], minimo, origen, alcance;
vector<pair<int, int> > largociclo;
stack<int> s;
bool desechado, existehoja;


void dfs(int nodo){
    int h;
    visitado[nodo] = 1;
    s.push(nodo);
    for (auto hh : hijos[nodo]){
        h = hh.destino;
        if (visitado[h] == 0) dfs(h);
        else if (visitado[h] == 1){ // SE ENCONTRO UN CICLO
            while (!s.empty() && s.top() != h){
                ciclo[s.top()] = h;
                nodosciclo[h].push_back(s.top());
                visitado[s.top()] = 3;
                s.pop();
            }
            nodosciclo[h].push_back(h);
            ciclo[h] = h;
            visitado[h] = 3;
            if (!s.empty()) s.pop();

            largociclo.emplace_back(nodosciclo[h].size(), h);
        }
        else if (visitado[h] == 3){ // SE UNIO A UN CICLO QUE YA EXISTE
            while (!s.empty() && ciclo[s.top()] == -1){
                ciclo[s.top()] = ciclo[h];
                nodosciclo[h].push_back(s.top());
                visitado[s.top()] = 3;
                s.pop();
            }
        }
    }
    visitado[nodo] = 2;
    if (!s.empty() && s.top() == nodo) s.pop();
}

std::vector<int> find_reachable(std::vector<int> r, std::vector<int> u, std::vector<int> v, std::vector<int> c) {
	std::vector<int> ans(r.size(), 0);

    // CONSTRUYE UN GRAFO DIRIGIDO UNICAMENTE CON LAS ARISTAS QUE SE PUEDEN USAR CON LA LLAVE DE CADA CUARTO
    rep(i, 0, u.size() - 1){
        if (c[i] == r[u[i]]) hijos[u[i]].emplace_back(v[i], c[i]); // SI LA LLAVE EN EL CUARTO u PUEDE ABRIR ESA PUERTA, AGREGALA AL GRAFO DE u -> v
        if (c[i] == r[v[i]]) hijos[v[i]].emplace_back(u[i], c[i]); // SI LA LLAVE EN EL CUARTO v PUEDE ABRIR ESA PUERTA, AGREGALA AL GRAFO DE v -> u
    }

    // VERIFICA SI HAY ALGUN CUARTO CON ALCANCE 0
    existehoja = false;
    rep(cuarto, 0, r.size() - 1) if (hijos[cuarto].size() == 0){
        existehoja = true;
        break;
    }
    if (existehoja){
        rep(cuarto, 0, r.size() - 1) if (hijos[cuarto].size() == 0) ans[cuarto] = 1;
        return ans;
    }

    // DENTRO DEL GRAFO DIRIGIDO ANTERIOR UNA HOJA REPRESENTA UN CUARTO QUE NO PUEDE LLEGAR A NINGUN OTRO Y POR LO TANTO SERIA MINIMO
    // SI NO HAY NINGUNA HOJA, ENTONCES BUSCAMOS CICLOS QUE NO BIFURQUEN, ES DECIR, QUE PUEDEN ENTRAR ARISTAS, PERO NO DEBE SALIR NINGUNA.
    // EL CUARTO CON ALCANCE MINIMO PERTENECE A ALGUNO DE ESTOS CICLOS.
    rep(cuarto, 0, r.size() - 1) ciclo[cuarto] = -1;
    rep(cuarto, 0, r.size() - 1) if (!visitado[cuarto]) dfs(cuarto);

    sort(largociclo.begin(), largociclo.end());
    minimo = r.size() + 1;

    // AGREGA TODAS LAS ARISTAS PARA PODER VER EL ALCANCE
    rep(cuarto, 0, r.size() - 1) hijos[cuarto].clear();
    rep(i, 0, c.size() - 1){
        hijos[u[i]].emplace_back(v[i], c[i]);
        hijos[v[i]].emplace_back(u[i], c[i]);
    }

    // PARA CADA CICLO REVISA EL ALCANCE QUE TIENE
    vector<int> vis(r.size(), -1); // PERMITE SABER QUE NODOS YA FUERON VISITADOS
    vector<int> llave(r.size(), -1); // PERMITE SABER QUE LLAVES YA SE TIENEN
    queue<int> q;

    for (auto c : largociclo){
        if (c.first > minimo) break;
        origen = c.second;
        alcance = 0;
        desechado = false;

        map<int, queue<int> > aristas; // PERMITE GUARDAR LAS ARISTAS QUE SE ACTIVARAN SI SE ENCUENTRA UN TIPO DE LLAVE
        vector<int> alcanzado;

	    vis[origen] = origen; // VISITA EL NODO ACTUAL
	    alcanzado.push_back(origen);
	    alcance = 1;
	    q.push(origen);

	    while (!q.empty()){
            if (alcance > minimo){
                desechado = true;
                break;
            }
            int nodo = q.front();
            q.pop();

            if (cicloprocesado[nodo] > 0){
                desechado = true;
                break;
            }

            for (auto h : hijos[nodo]){ // REVISA TODOS LOS NODOS A LOS QUE ESTA CONECTADO
                if (llave[h.tipo] == origen){ // SI YA TIENE EL TIPO DE LLAVE NECESARIO
                    if (vis[h.destino] != origen){ // Y EL NODO NO HA SIDO VISITADO, ENTONCES VISITALO Y AGREGALO A LA COLA
                        vis[h.destino] = origen;
                        alcanzado.push_back(h.destino);
                        ++alcance;
                        q.push(h.destino);
                    }
                    // SI YA FUE VISITADO NO ES NECESARIO HACER NADA
                }
                else { // SI NO TIENE ESE TIPO DE LLAVE TODAVIA
                    if (vis[h.destino] != origen){ // Y EL NODO AUN NO HA SIDO VISITADO
                        aristas[h.tipo].push(h.destino); // GUARDA EL NODO COMO ALCANZABLE POTENCIAL POR SI SE LLEGA A ENCONTRAR UNA LLAVE DE ESE TIPO.
                    }
                }
            }

            // RECOGE LA LLAVE DEL CUARTO Y MARCALA COMO ACTIVA
            if (llave[r[nodo]] != origen){ // SI NO HABIA ENCONTRADO ESE TIPO DE LLAVE
                llave[r[nodo]] = origen;
                if (aristas.find(r[nodo]) != aristas.end()){
                    while (!aristas[r[nodo]].empty()){ // SACA TODOS LOS NODOS A LOS QUE SE PODIA LLEGAR SI SE ENCONTRABA ESE TIPO DE LLAVE
                        int nod = aristas[r[nodo]].front();
                        aristas[r[nodo]].pop();
                        if (vis[nod] != origen){
                            vis[nod] = origen;
                            alcanzado.push_back(nod);
                            ++alcance;
                            q.push(nod);
                        }
                    }
                    aristas.erase(r[nodo]);
                }
            }
	    }

        while(!q.empty()) q.pop();

        for(auto n : nodosciclo[origen]) cicloprocesado[n] = 1;

        if (!desechado && alcance < minimo){
            minimo = alcance;
            vector<int> ().swap(ans);
            ans.resize(r.size(), 0);
            for(auto a : alcanzado) ans[a] = 1;
        }
        else if (!desechado && alcance == minimo){
            for(auto a : alcanzado) ans[a] = 1;
        }
    }

	return ans;
}

Compilation message

keys.cpp: In function 'std::vector<int> find_reachable(std::vector<int>, std::vector<int>, std::vector<int>, std::vector<int>)':
keys.cpp:7:41: warning: comparison of integer expressions of different signedness: 'long long int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
    7 | #define rep(i, a, b) for(lli i = (a); i <= (b); ++i)
      |                                         ^
keys.cpp:66:5: note: in expansion of macro 'rep'
   66 |     rep(i, 0, u.size() - 1){
      |     ^~~
keys.cpp:7:41: warning: comparison of integer expressions of different signedness: 'long long int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
    7 | #define rep(i, a, b) for(lli i = (a); i <= (b); ++i)
      |                                         ^
keys.cpp:73:5: note: in expansion of macro 'rep'
   73 |     rep(cuarto, 0, r.size() - 1) if (hijos[cuarto].size() == 0){
      |     ^~~
keys.cpp:7:41: warning: comparison of integer expressions of different signedness: 'long long int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
    7 | #define rep(i, a, b) for(lli i = (a); i <= (b); ++i)
      |                                         ^
keys.cpp:78:9: note: in expansion of macro 'rep'
   78 |         rep(cuarto, 0, r.size() - 1) if (hijos[cuarto].size() == 0) ans[cuarto] = 1;
      |         ^~~
keys.cpp:7:41: warning: comparison of integer expressions of different signedness: 'long long int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
    7 | #define rep(i, a, b) for(lli i = (a); i <= (b); ++i)
      |                                         ^
keys.cpp:85:5: note: in expansion of macro 'rep'
   85 |     rep(cuarto, 0, r.size() - 1) ciclo[cuarto] = -1;
      |     ^~~
keys.cpp:7:41: warning: comparison of integer expressions of different signedness: 'long long int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
    7 | #define rep(i, a, b) for(lli i = (a); i <= (b); ++i)
      |                                         ^
keys.cpp:86:5: note: in expansion of macro 'rep'
   86 |     rep(cuarto, 0, r.size() - 1) if (!visitado[cuarto]) dfs(cuarto);
      |     ^~~
keys.cpp:7:41: warning: comparison of integer expressions of different signedness: 'long long int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
    7 | #define rep(i, a, b) for(lli i = (a); i <= (b); ++i)
      |                                         ^
keys.cpp:92:5: note: in expansion of macro 'rep'
   92 |     rep(cuarto, 0, r.size() - 1) hijos[cuarto].clear();
      |     ^~~
keys.cpp:7:41: warning: comparison of integer expressions of different signedness: 'long long int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
    7 | #define rep(i, a, b) for(lli i = (a); i <= (b); ++i)
      |                                         ^
keys.cpp:93:5: note: in expansion of macro 'rep'
   93 |     rep(i, 0, c.size() - 1){
      |     ^~~
# Verdict Execution time Memory Grader output
1 Correct 11 ms 14348 KB Output is correct
2 Correct 11 ms 14412 KB Output is correct
3 Correct 10 ms 14284 KB Output is correct
4 Correct 12 ms 14284 KB Output is correct
5 Correct 11 ms 14284 KB Output is correct
6 Correct 14 ms 14284 KB Output is correct
7 Correct 11 ms 14392 KB Output is correct
8 Correct 13 ms 14412 KB Output is correct
9 Correct 12 ms 14412 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 11 ms 14348 KB Output is correct
2 Correct 11 ms 14412 KB Output is correct
3 Correct 10 ms 14284 KB Output is correct
4 Correct 12 ms 14284 KB Output is correct
5 Correct 11 ms 14284 KB Output is correct
6 Correct 14 ms 14284 KB Output is correct
7 Correct 11 ms 14392 KB Output is correct
8 Correct 13 ms 14412 KB Output is correct
9 Correct 12 ms 14412 KB Output is correct
10 Correct 10 ms 14284 KB Output is correct
11 Correct 11 ms 14312 KB Output is correct
12 Correct 11 ms 14308 KB Output is correct
13 Correct 11 ms 14284 KB Output is correct
14 Correct 11 ms 14284 KB Output is correct
15 Correct 11 ms 14464 KB Output is correct
16 Correct 13 ms 14384 KB Output is correct
17 Correct 10 ms 14284 KB Output is correct
18 Correct 12 ms 14412 KB Output is correct
19 Correct 10 ms 14284 KB Output is correct
20 Correct 10 ms 14412 KB Output is correct
21 Correct 12 ms 14412 KB Output is correct
22 Correct 11 ms 14284 KB Output is correct
23 Correct 10 ms 14284 KB Output is correct
24 Correct 11 ms 14388 KB Output is correct
25 Correct 11 ms 14288 KB Output is correct
26 Correct 10 ms 14296 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 11 ms 14348 KB Output is correct
2 Correct 11 ms 14412 KB Output is correct
3 Correct 10 ms 14284 KB Output is correct
4 Correct 12 ms 14284 KB Output is correct
5 Correct 11 ms 14284 KB Output is correct
6 Correct 14 ms 14284 KB Output is correct
7 Correct 11 ms 14392 KB Output is correct
8 Correct 13 ms 14412 KB Output is correct
9 Correct 12 ms 14412 KB Output is correct
10 Correct 10 ms 14284 KB Output is correct
11 Correct 11 ms 14312 KB Output is correct
12 Correct 11 ms 14308 KB Output is correct
13 Correct 11 ms 14284 KB Output is correct
14 Correct 11 ms 14284 KB Output is correct
15 Correct 11 ms 14464 KB Output is correct
16 Correct 13 ms 14384 KB Output is correct
17 Correct 10 ms 14284 KB Output is correct
18 Correct 12 ms 14412 KB Output is correct
19 Correct 10 ms 14284 KB Output is correct
20 Correct 10 ms 14412 KB Output is correct
21 Correct 12 ms 14412 KB Output is correct
22 Correct 11 ms 14284 KB Output is correct
23 Correct 10 ms 14284 KB Output is correct
24 Correct 11 ms 14388 KB Output is correct
25 Correct 11 ms 14288 KB Output is correct
26 Correct 10 ms 14296 KB Output is correct
27 Correct 14 ms 14428 KB Output is correct
28 Correct 12 ms 14412 KB Output is correct
29 Correct 12 ms 14412 KB Output is correct
30 Correct 12 ms 14796 KB Output is correct
31 Correct 11 ms 14368 KB Output is correct
32 Correct 11 ms 14412 KB Output is correct
33 Correct 11 ms 14412 KB Output is correct
34 Correct 32 ms 14540 KB Output is correct
35 Correct 12 ms 14412 KB Output is correct
36 Correct 11 ms 14440 KB Output is correct
37 Correct 12 ms 14504 KB Output is correct
38 Correct 14 ms 14412 KB Output is correct
39 Correct 12 ms 14412 KB Output is correct
40 Correct 15 ms 14408 KB Output is correct
41 Correct 15 ms 14548 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 11 ms 14348 KB Output is correct
2 Correct 11 ms 14412 KB Output is correct
3 Correct 10 ms 14284 KB Output is correct
4 Correct 12 ms 14284 KB Output is correct
5 Correct 11 ms 14284 KB Output is correct
6 Correct 14 ms 14284 KB Output is correct
7 Correct 11 ms 14392 KB Output is correct
8 Correct 13 ms 14412 KB Output is correct
9 Correct 12 ms 14412 KB Output is correct
10 Correct 131 ms 24964 KB Output is correct
11 Correct 325 ms 43788 KB Output is correct
12 Correct 73 ms 20096 KB Output is correct
13 Correct 455 ms 42352 KB Output is correct
14 Correct 437 ms 89096 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 11 ms 14348 KB Output is correct
2 Correct 11 ms 14412 KB Output is correct
3 Correct 10 ms 14284 KB Output is correct
4 Correct 12 ms 14284 KB Output is correct
5 Correct 11 ms 14284 KB Output is correct
6 Correct 14 ms 14284 KB Output is correct
7 Correct 11 ms 14392 KB Output is correct
8 Correct 13 ms 14412 KB Output is correct
9 Correct 12 ms 14412 KB Output is correct
10 Correct 10 ms 14284 KB Output is correct
11 Correct 11 ms 14312 KB Output is correct
12 Correct 11 ms 14308 KB Output is correct
13 Correct 11 ms 14284 KB Output is correct
14 Correct 11 ms 14284 KB Output is correct
15 Correct 11 ms 14464 KB Output is correct
16 Correct 13 ms 14384 KB Output is correct
17 Correct 10 ms 14284 KB Output is correct
18 Correct 12 ms 14412 KB Output is correct
19 Correct 10 ms 14284 KB Output is correct
20 Correct 10 ms 14412 KB Output is correct
21 Correct 12 ms 14412 KB Output is correct
22 Correct 11 ms 14284 KB Output is correct
23 Correct 10 ms 14284 KB Output is correct
24 Correct 11 ms 14388 KB Output is correct
25 Correct 11 ms 14288 KB Output is correct
26 Correct 10 ms 14296 KB Output is correct
27 Correct 14 ms 14428 KB Output is correct
28 Correct 12 ms 14412 KB Output is correct
29 Correct 12 ms 14412 KB Output is correct
30 Correct 12 ms 14796 KB Output is correct
31 Correct 11 ms 14368 KB Output is correct
32 Correct 11 ms 14412 KB Output is correct
33 Correct 11 ms 14412 KB Output is correct
34 Correct 32 ms 14540 KB Output is correct
35 Correct 12 ms 14412 KB Output is correct
36 Correct 11 ms 14440 KB Output is correct
37 Correct 12 ms 14504 KB Output is correct
38 Correct 14 ms 14412 KB Output is correct
39 Correct 12 ms 14412 KB Output is correct
40 Correct 15 ms 14408 KB Output is correct
41 Correct 15 ms 14548 KB Output is correct
42 Correct 131 ms 24964 KB Output is correct
43 Correct 325 ms 43788 KB Output is correct
44 Correct 73 ms 20096 KB Output is correct
45 Correct 455 ms 42352 KB Output is correct
46 Correct 437 ms 89096 KB Output is correct
47 Correct 11 ms 14284 KB Output is correct
48 Correct 11 ms 14400 KB Output is correct
49 Correct 10 ms 14284 KB Output is correct
50 Correct 283 ms 67952 KB Output is correct
51 Correct 201 ms 34812 KB Output is correct
52 Correct 143 ms 24576 KB Output is correct
53 Correct 144 ms 24504 KB Output is correct
54 Correct 142 ms 24560 KB Output is correct
55 Correct 131 ms 24320 KB Output is correct
56 Correct 212 ms 30596 KB Output is correct
57 Correct 189 ms 29176 KB Output is correct
58 Correct 244 ms 34304 KB Output is correct
59 Correct 1026 ms 125016 KB Output is correct
60 Correct 217 ms 30036 KB Output is correct
61 Correct 197 ms 29960 KB Output is correct
62 Correct 205 ms 27076 KB Output is correct
63 Correct 290 ms 37376 KB Output is correct
64 Correct 28 ms 15564 KB Output is correct
65 Correct 37 ms 15648 KB Output is correct
66 Correct 162 ms 27008 KB Output is correct
67 Correct 172 ms 21788 KB Output is correct
68 Correct 237 ms 26776 KB Output is correct
69 Correct 1030 ms 121676 KB Output is correct
70 Correct 472 ms 39284 KB Output is correct
71 Correct 1390 ms 89316 KB Output is correct
72 Correct 1055 ms 124904 KB Output is correct
73 Correct 154 ms 27076 KB Output is correct