Submission #430203

#TimeUsernameProblemLanguageResultExecution timeMemory
430203koioi.org-koosagaPower plants (CPSPC17_power)C++17
0 / 100
3 ms2764 KiB
#include <bits/stdc++.h> using namespace std; using lint = long long; using pi = pair<int, int>; #define sz(v) ((int)(v).size()) #define all(v) (v).begin(), (v).end() const int MAXN = 100005; typedef long long ll; namespace DT{ using ll = long long; bool ge(const ll& a, const ll& b) { return a >= b; } bool le(const ll& a, const ll& b) { return a <= b; } bool eq(const ll& a, const ll& b) { return a == b; } bool gt(const ll& a, const ll& b) { return a > b; } bool lt(const ll& a, const ll& b) { return a < b; } int sgn(const ll& a) { return a >= 0 ? a ? 1 : 0 : -1; } struct pt { int x, y; pt() { } pt(ll _x, ll _y) : x(_x), y(_y) { } bool operator<(const pt &p)const{ return make_pair(x, y) < make_pair(p.x, p.y); } bool operator>(const pt &p)const{ return make_pair(x, y) > make_pair(p.x, p.y); } pt operator-(const pt& p) const { return pt(x - p.x, y - p.y); } ll cross(const pt& p) const { return 1ll * x * p.y - 1ll * y * p.x; } ll cross(const pt& a, const pt& b) const { return (a - *this).cross(b - *this); } ll dot(const pt& p) const { return 1ll * x * p.x + 1ll * y * p.y; } ll dot(const pt& a, const pt& b) const { return (a - *this).dot(b - *this); } ll sqrLength() const { return this->dot(*this); } bool operator==(const pt& p) const { return eq(x, p.x) && eq(y, p.y); } }; const pt inf_pt = pt(2e9, 2e9); struct QuadEdge { pt origin; QuadEdge* rot = nullptr; QuadEdge* onext = nullptr; bool used = false; QuadEdge* rev() const { return rot->rot; } QuadEdge* lnext() const { return rot->rev()->onext->rot; } QuadEdge* oprev() const { return rot->onext->rot; } pt dest() const { return rev()->origin; } }; QuadEdge* make_edge(pt from, pt to) { QuadEdge* e1 = new QuadEdge; QuadEdge* e2 = new QuadEdge; QuadEdge* e3 = new QuadEdge; QuadEdge* e4 = new QuadEdge; e1->origin = from; e2->origin = to; e3->origin = e4->origin = inf_pt; e1->rot = e3; e2->rot = e4; e3->rot = e2; e4->rot = e1; e1->onext = e1; e2->onext = e2; e3->onext = e4; e4->onext = e3; return e1; } void splice(QuadEdge* a, QuadEdge* b) { swap(a->onext->rot->onext, b->onext->rot->onext); swap(a->onext, b->onext); } void delete_edge(QuadEdge* e) { splice(e, e->oprev()); splice(e->rev(), e->rev()->oprev()); delete e->rev()->rot; delete e->rev(); delete e->rot; delete e; } QuadEdge* connect(QuadEdge* a, QuadEdge* b) { QuadEdge* e = make_edge(a->dest(), b->origin); splice(e, a->lnext()); splice(e->rev(), b); return e; } bool left_of(pt p, QuadEdge* e) { return gt(p.cross(e->origin, e->dest()), 0); } bool right_of(pt p, QuadEdge* e) { return lt(p.cross(e->origin, e->dest()), 0); } template <class T> T det3(T a1, T a2, T a3, T b1, T b2, T b3, T c1, T c2, T c3) { return a1 * (b2 * c3 - c2 * b3) - a2 * (b1 * c3 - c1 * b3) + a3 * (b1 * c2 - c1 * b2); } bool in_circle(pt a, pt b, pt c, pt d) { long double det = -det3<long double>(b.x, b.y, b.sqrLength(), c.x, c.y, c.sqrLength(), d.x, d.y, d.sqrLength()); det += det3<long double>(a.x, a.y, a.sqrLength(), c.x, c.y, c.sqrLength(), d.x, d.y, d.sqrLength()); det -= det3<long double>(a.x, a.y, a.sqrLength(), b.x, b.y, b.sqrLength(), d.x, d.y, d.sqrLength()); det += det3<long double>(a.x, a.y, a.sqrLength(), b.x, b.y, b.sqrLength(), c.x, c.y, c.sqrLength()); if(fabs(det) > 1e18) return det > 0; else{ ll det = -det3<ll>(b.x, b.y, b.sqrLength(), c.x, c.y, c.sqrLength(), d.x, d.y, d.sqrLength()); det += det3<ll>(a.x, a.y, a.sqrLength(), c.x, c.y, c.sqrLength(), d.x, d.y, d.sqrLength()); det -= det3<ll>(a.x, a.y, a.sqrLength(), b.x, b.y, b.sqrLength(), d.x, d.y, d.sqrLength()); det += det3<ll>(a.x, a.y, a.sqrLength(), b.x, b.y, b.sqrLength(), c.x, c.y, c.sqrLength()); return (det > 0); } } pair<QuadEdge*, QuadEdge*> build_tr(int l, int r, vector<pt>& p) { if (r - l + 1 == 2) { QuadEdge* res = make_edge(p[l], p[r]); return make_pair(res, res->rev()); } if (r - l + 1 == 3) { QuadEdge *a = make_edge(p[l], p[l + 1]), *b = make_edge(p[l + 1], p[r]); splice(a->rev(), b); int sg = sgn(p[l].cross(p[l + 1], p[r])); if (sg == 0) return make_pair(a, b->rev()); QuadEdge* c = connect(b, a); if (sg == 1) return make_pair(a, b->rev()); else return make_pair(c->rev(), c); } int mid = (l + r) / 2; QuadEdge *ldo, *ldi, *rdo, *rdi; tie(ldo, ldi) = build_tr(l, mid, p); tie(rdi, rdo) = build_tr(mid + 1, r, p); while (true) { if (left_of(rdi->origin, ldi)) { ldi = ldi->lnext(); continue; } if (right_of(ldi->origin, rdi)) { rdi = rdi->rev()->onext; continue; } break; } QuadEdge* basel = connect(rdi->rev(), ldi); auto valid = [&basel](QuadEdge* e) { return right_of(e->dest(), basel); }; if (ldi->origin == ldo->origin) ldo = basel->rev(); if (rdi->origin == rdo->origin) rdo = basel; while (true) { QuadEdge* lcand = basel->rev()->onext; if (valid(lcand)) { while (in_circle(basel->dest(), basel->origin, lcand->dest(), lcand->onext->dest())) { QuadEdge* t = lcand->onext; delete_edge(lcand); lcand = t; } } QuadEdge* rcand = basel->oprev(); if (valid(rcand)) { while (in_circle(basel->dest(), basel->origin, rcand->dest(), rcand->oprev()->dest())) { QuadEdge* t = rcand->oprev(); delete_edge(rcand); rcand = t; } } if (!valid(lcand) && !valid(rcand)) break; if (!valid(lcand) || (valid(rcand) && in_circle(lcand->dest(), lcand->origin, rcand->origin, rcand->dest()))) basel = connect(rcand, basel->rev()); else basel = connect(basel->rev(), lcand->rev()); } return make_pair(ldo, rdo); } vector<tuple<pt, pt, pt>> delaunay(vector<pt> p) { sort(p.begin(), p.end(), [](const pt& a, const pt& b) { return lt(a.x, b.x) || (eq(a.x, b.x) && lt(a.y, b.y)); }); auto res = build_tr(0, (int)p.size() - 1, p); QuadEdge* e = res.first; vector<QuadEdge*> edges = {e}; while (lt(e->onext->dest().cross(e->dest(), e->origin), 0)) e = e->onext; auto add = [&p, &e, &edges]() { QuadEdge* curr = e; do { curr->used = true; p.push_back(curr->origin); edges.push_back(curr->rev()); curr = curr->lnext(); } while (curr != e); }; add(); p.clear(); int kek = 0; while (kek < (int)edges.size()) { if (!(e = edges[kek++])->used) add(); } vector<tuple<pt, pt, pt>> ans; for (int i = 0; i < (int)p.size(); i += 3) { ans.push_back(make_tuple(p[i], p[i + 1], p[i + 2])); } return ans; } bool in_triangle(pt a, pt b, pt c, pt d){ if((b - a).cross(c - a) < 0) swap(b, c); if((b - a).cross(d - a) < 0) return 0; if((c - b).cross(d - b) < 0) return 0; if((a - c).cross(d - c) < 0) return 0; return 1; } } struct edge{ int s, e; lint x; bool operator<(const edge &e)const{ return x < e.x; } }; struct disj{ int pa[MAXN]; void init(int n){ iota(pa, pa + n, 0); } int find(int x){ return pa[x] = (pa[x] == x ? x : find(pa[x])); } bool uni(int p, int q){ p = find(p); q = find(q); if(p == q) return 0; pa[q] = p; return 1; } }disj; namespace GGD{ int n; pi a[100005]; bool cmp(pi a, pi b){return a.second < b.second;} lint dist(pi x, pi y){return 1ll*(y.second - x.second) * (y.second - x.second) + 1ll*(y.first - x.first) * (y.first - x.first);} lint closest(int s, int e){ if(s == e-2){ return min(min(dist(a[s],a[s+1]),dist(a[s+1],a[s+2])),dist(a[s],a[s+2])); } if(s == e-1){ return dist(a[s],a[e]); } int m = (s+e)/2; lint res = min(closest(s,m),closest(m+1,e)); vector<pi> strip; for (int i=s; i<=e; i++) { if(abs(a[i].first - a[m].first) < res){ strip.push_back(a[i]); } } sort(strip.begin(),strip.end(),cmp); for (int i=0; i<strip.size(); i++) { for (int j=i+1; j<strip.size() && 1ll* (strip[j].second - strip[i].second) * (strip[j].second - strip[i].second) < res; j++){ res = min(res,dist(strip[j],strip[i])); } } return res; } lint getdist(vector<DT::pt> v){ n = sz(v); for (int i=0; i<n; i++) { a[i] = pi(v[i].x, v[i].y); } sort(a,a+n); return closest(0, n - 1); } }; vector<int> gph[MAXN]; int col[MAXN]; lint dist(DT::pt a, DT::pt b){ lint dx = b.x - a.x; lint dy = b.y - a.y; return dx*dx+dy*dy; } void dfs(int x, int c, int p = -1){ col[x] = c; for(auto &i : gph[x]){ if(i != p) dfs(i, 3-c, x); } } int main(){ int n; scanf("%d",&n); vector<DT::pt> a(n); map<DT::pt, int> mp; int cnt = 0; for(auto &i : a){ scanf("%d %d",&i.x,&i.y); mp[i] = cnt++; } vector<edge> v; auto dt = DT::delaunay(a); for(int i=0; i<sz(dt); i++){ auto [x, y, z] = dt[i]; auto edges = {make_pair(x, y), make_pair(x, z), make_pair(y, z)}; for(auto &[x, y] : edges){ v.push_back({mp[x], mp[y], dist(x,y)}); } } sort(all(v)); disj.init(n); for(int i=0; i<sz(v); i++){ if(disj.uni(v[i].s, v[i].e)){ gph[v[i].s].push_back(v[i].e); gph[v[i].e].push_back(v[i].s); } } dfs(0, 1); { vector<DT::pt> v[2]; for(int i = 0; i < n; i++){ v[col[i] - 1].push_back(a[i]); } printf("%lld\n", max(GGD::getdist(v[0]), GGD::getdist(v[1]))); for(int i = 0; i < 2; i++){ printf("%d\n", sz(v[i])); for(int j = 0; j < n; j++){ if(col[j] == i + 1) printf("%d ", j + 1); } puts(""); } } }

Compilation message (stderr)

Main.cpp: In function 'lint GGD::closest(int, int)':
Main.cpp:312:18: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<std::pair<int, int> >::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  312 |   for (int i=0; i<strip.size(); i++) {
      |                 ~^~~~~~~~~~~~~
Main.cpp:313:21: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<std::pair<int, int> >::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  313 |    for (int j=i+1; j<strip.size() &&
      |                    ~^~~~~~~~~~~~~
Main.cpp: In function 'int main()':
Main.cpp:352:7: warning: ignoring return value of 'int scanf(const char*, ...)' declared with attribute 'warn_unused_result' [-Wunused-result]
  352 |  scanf("%d",&n);
      |  ~~~~~^~~~~~~~~
Main.cpp:357:8: warning: ignoring return value of 'int scanf(const char*, ...)' declared with attribute 'warn_unused_result' [-Wunused-result]
  357 |   scanf("%d %d",&i.x,&i.y);
      |   ~~~~~^~~~~~~~~~~~~~~~~~~
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...