Submission #429793

#TimeUsernameProblemLanguageResultExecution timeMemory
429793palilo2circles (balkan11_2circles)C++17
100 / 100
189 ms6180 KiB
#include <bits/stdc++.h> using namespace std; template <class T> bool chmin(T& _old, T _new) { return _old > _new && (_old = _new, true); } template <class T> bool chmax(T& _old, T _new) { return _old < _new && (_old = _new, true); } /* basics */ namespace geo { #define EPS 1e-8 template <typename T, enable_if_t<is_integral<T>::value, bool> = true> int sign(T x) { return (x > 0) - (x < 0); } template <typename T, enable_if_t<is_floating_point<T>::value, bool> = true> int sign(T x) { return (x > EPS) - (x < -EPS); } }; // namespace geo /* point2D */ namespace geo { template <typename T> struct point2D { T x, y; point2D() = default; point2D(T _x, T _y) : x(_x), y(_y) {} template <typename U> explicit point2D(const point2D<U>& p) : x(p.x), y(p.y) {} using P = point2D; bool operator<(const P& p) const { return tie(x, y) < tie(p.x, p.y); } bool operator==(const P& p) const { return tie(x, y) == tie(p.x, p.y); } bool operator!=(const P& p) const { return tie(x, y) != tie(p.x, p.y); } friend P operator+(const P& a, const P& b) { return P(a.x + b.x, a.y + b.y); } friend P operator-(const P& a, const P& b) { return P(a.x - b.x, a.y - b.y); } friend P operator*(const P& a, const T& scalar) { return P(a.x * scalar, a.y * scalar); } friend P operator*(const T& scalar, const P& a) { return P(scalar * a.x, scalar * a.y); } friend P operator/(const P& a, const T& scalar) { return P(a.x / scalar, a.y / scalar); } friend ostream& operator<<(ostream& o, const P& p) { return o << '(' << p.x << ", " << p.y << ')'; } friend istream& operator>>(istream& i, P& p) { return i >> p.x >> p.y; } T dot(const P& p) const { return x * p.x + y * p.y; } T cross(const P& p) const { return x * p.y - y * p.x; } T cross(const P& a, const P& b) const { return (a - *this).cross(b - *this); } T dist2() const { return x * x + y * y; } double dist() const { return sqrt(dist2()); } P perp_cw() const { return P(y, -x); } P perp_ccw() const { return P(-y, x); } P unit() const { return *this / dist(); } P normal() const { return perp_ccw().unit(); } P unit_int() const { return x || y ? *this / gcd(x, y) : *this; } P normal_int() const { return perp_ccw().unit_int(); } bool same_dir(const P& p) const { return cross(p) == 0 && dot(p) > 0; } int side_of(const P& s, const P& e) const { if constexpr (is_integral_v<T>) { return sign(s.cross(e, *this)); } else { auto res = (e - s).cross(*this - s); double l = (e - s).dist() * EPS; return (res > l) - (res < -l); } } double angle() const { return atan2(y, x); } P rotate(double radian) const { return P(x * cos(radian) - y * sin(radian), x * sin(radian) + y * cos(radian)); } }; }; // namespace geo namespace geo::point_in { template <typename T, enable_if_t<is_integral<T>::value, bool> = true> bool segment(const point2D<T>& p, const pair<point2D<T>, point2D<T>>& obj) { return p.cross(obj.first, obj.second) == 0 && (obj.first - p).dot(obj.second - p) <= 0; } template <typename T, enable_if_t<is_floating_point<T>::value, bool> = true> bool segment(const point2D<T>& p, const pair<point2D<T>, point2D<T>>& obj) { return fabs(p.cross(obj.first, obj.second)) < EPS && (obj.first - p).dot(obj.second - p) < EPS; } template <typename T> bool hull(const point2D<T>& p, const vector<point2D<T>>& obj, bool boundary) { if (obj.size() < 3) return boundary && point_in::segment(p, pair(obj.front(), obj.back())); int lo = 1, hi = obj.size() - 1; if (p.side_of(obj[0], obj[lo]) <= -boundary || p.side_of(obj[0], obj[hi]) >= boundary) return false; while (lo + 1 != hi) { int mid = (lo + hi) >> 1; (p.side_of(obj[0], obj[mid]) == 1 ? lo : hi) = mid; } return p.side_of(obj[lo], obj[hi]) > -boundary; } template <typename T> bool polygon(const point2D<T>& p, const vector<point2D<T>>& obj, bool boundary) { bool ret = false; for (int i = 0; i < int(obj.size()); ++i) { const auto s = obj[i], e = obj[i == int(obj.size()) - 1 ? 0 : i + 1]; if (point_in::segment(p, pair(s, e))) return boundary; ret ^= ((p.y < s.y) - (p.y < e.y)) * p.cross(s, e) > 0; } return ret; } }; // namespace geo::point_in namespace geo::distance2 { template <typename T> T hull_diameter(const vector<point2D<T>>& hull) { T diameter = 0; int n = hull.size(); for (int i = 0, j = n > 1; i < j; ++i) { for (;; j = j == n - 1 ? 0 : j + 1) { chmax(diameter, (hull[i] - hull[j]).dist2()); if ((hull[(j + 1) % n] - hull[j]).cross(hull[i + 1] - hull[i]) >= 0) break; } } return diameter; } }; // namespace geo::distance2 namespace geo::intersected { template <typename T> bool segment_segment(const pair<point2D<T>, point2D<T>>& u, const pair<point2D<T>, point2D<T>>& v) { if (u.first.side_of(v.first, v.second) * u.second.side_of(v.first, v.second) < 0 && v.first.side_of(u.first, u.second) * v.second.side_of(u.first, u.second) < 0) return true; return point_in::segment(u.first, v) || point_in::segment(u.second, v) || point_in::segment(v.first, u) || point_in::segment(v.second, u); } template <typename T> bool line_line(const pair<point2D<T>, point2D<T>>& u, const pair<point2D<T>, point2D<T>>& v) { return (u.second - u.first).cross(v.second - v.frst) || u.first.side_of(v.first, v.second) == 0; } }; // namespace geo::intersected namespace geo::intersection { template <typename T> pair<int, point2D<double>> segment_segment(const pair<point2D<T>, point2D<T>>& u, const pair<point2D<T>, point2D<T>>& v) { auto oa = v.first.cross(v.second, u.first), ob = v.first.cross(v.second, u.second), oc = u.first.cross(u.second, v.first), od = u.first.cross(u.second, v.second); if (sign(oa) * sign(ob) < 0 && sign(oc) * sign(od) < 0) return {1, (point2D<double>(u.first) * ob - point2D<double>(u.second) * oa) / (ob - oa)}; vector<point2D<T>> pts; if (point_in::segment(u.first, v)) pts.emplace_back(u.first); if (point_in::segment(u.second, v)) pts.emplace_back(u.second); if (point_in::segment(v.first, u)) pts.emplace_back(v.first); if (point_in::segment(v.second, u)) pts.emplace_back(v.second); if (pts.empty()) return {0, point2D<double>()}; if (any_of(pts.begin() + 1, pts.end(), [&](const auto& p) { return sign((p - pts.front()).dist()); })) return {-1, point2D<double>()}; return {1, point2D<double>(pts.front())}; } template <typename T> point2D<double> line_line(const pair<point2D<T>, point2D<T>>& u, const pair<point2D<T>, point2D<T>>& v) { return (u.first * v.first.cross(u.second, v.second) + u.second * v.first.cross(v.second, u.first)) / (u.second - u.first).cross(v.second - v.first); } }; // namespace geo::intersection int main() { cin.tie(nullptr)->sync_with_stdio(false); #ifdef palilo freopen("in", "r", stdin); freopen("out", "w", stdout); #endif using point = geo::point2D<double>; int n; cin >> n; vector<point> a(n); for (auto& p : a) cin >> p; for (int i = 0; i < n; ++i) assert(a[i].side_of(a[(i + 1) % n], a[(i + 2) % n]) == 1); vector<point> perp_units(n); for (int i = 0; i < n - 1; ++i) perp_units[i] = (a[i + 1] - a[i]).perp_ccw().unit(); perp_units.back() = (a[0] - a[n - 1]).perp_ccw().unit(); vector<pair<point, point>> line(n); vector<point> deflated; deflated.reserve(n); auto ok = [&](double R) -> bool { for (int i = 0; i < n - 1; ++i) line[i] = {a[i] + perp_units[i] * R, a[i + 1] + perp_units[i] * R}; line[n - 1] = {a[n - 1] + perp_units[n - 1] * R, a[0] + perp_units[n - 1] * R}; deque<pair<point, point>> dq; for (const auto& [s, e] : line) { while (dq.size() > 1 && geo::intersection::line_line(dq[dq.size() - 2], dq[dq.size() - 1]).side_of(s, e) != 1) dq.pop_back(); while (dq.size() > 1 && geo::intersection::line_line(dq[0], dq[1]).side_of(s, e) != 1) dq.pop_front(); dq.emplace_back(s, e); } while (dq.size() > 2 && geo::intersection::line_line(dq[dq.size() - 2], dq[dq.size() - 1]).side_of(dq[0].first, dq[0].second) != 1) dq.pop_back(); while (dq.size() > 2 && geo::intersection::line_line(dq[0], dq[1]).side_of(dq[dq.size() - 1].first, dq[dq.size() - 1].second) != 1) dq.pop_front(); deflated.clear(); for (int i = 0; i < int(dq.size()) - 1; ++i) deflated.emplace_back(geo::intersection::line_line(dq[i], dq[i + 1])); deflated.emplace_back(geo::intersection::line_line(dq.back(), dq.front())); return sqrt(geo::distance2::hull_diameter(deflated)) >= 2 * R; }; double lo = 0, hi = sqrt(geo::distance2::hull_diameter(a)) / 4; while (hi - lo > 1e-4) { double mid = (lo + hi) / 2; (ok(mid) ? lo : hi) = mid; } cout << fixed << setprecision(3) << lo; }
#Verdict Execution timeMemoryGrader output
Fetching results...