Submission #418336

# Submission time Handle Problem Language Result Execution time Memory
418336 2021-06-05T10:00:21 Z ACmachine Magic Tree (CEOI19_magictree) C++17
100 / 100
1266 ms 55448 KB
#include <bits/stdc++.h>
using namespace std;
#define FOR(i, j, k, l) for(int i = (j); i < (k); i += (l))
#define FORD(i, j, k, l) for(int i = (j); i >= (k); i -= (l))
#define REP(i, n) FOR(i, 0, n, 1)
#define REPD(i, n) FORD(i, n, 0, 1)
#define pb push_back
#define ff first
#define ss second
typedef long long ll;
const ll INFF = (ll)1e18;
const int INF = (int)1e9;
mt19937 rng(time(NULL));
// increase on interval;
// get key
// basically like dynamic segtree, but with O(n) memory
struct treap{
    int y;
    int key;
    ll val, lazy;
    ll maxi;
    int cnt = 1;
    array<treap*, 2> ch;
    treap(int _key, ll _val){
        key = _key;
        val = _val; 
        y = rng();
        maxi = val;
        lazy = 0; 
        ch = {NULL, NULL};
    }
};
int getcnt(treap* t){
    if(t == NULL) return 0;
    else return t->cnt;
}
void recalc(treap *t){
    if(t == NULL) 
        return;
    t->cnt = 1;
    t->maxi = t->val;
    REP(i, 2){
        if(t->ch[i] != NULL){
            t->maxi = max(t->maxi, t->ch[i]->maxi);
        }
        t->cnt += getcnt(t->ch[i]); 
    }
}
void push(treap *t){
    if(t == NULL || t->lazy == 0) 
        return;
    REP(i, 2){
        if(t->ch[i] != NULL){
            t->ch[i]->val += t->lazy;
            t->ch[i]->lazy += t->lazy;
            t->ch[i]->maxi += t->lazy;
        }
    }
    t->lazy = 0;
}
pair<treap*, treap*> split(treap* t, int k){ // all < k goes left
    if(t == NULL)
        return {NULL, NULL};
    push(t);
    if(t->key < k){
        auto pa = split(t->ch[1], k);
        t->ch[1] = pa.ff;
        recalc(t);
        return {t, pa.ss};
    }
    else{
        auto pa = split(t->ch[0], k);
        t->ch[0] = pa.ss;
        recalc(t);
        return {pa.ff, t};
    }
}
treap* merge(treap* f, treap* s){
    if(f == NULL) return s;
    if(s == NULL) return f; 
    if(f->y >= s->y){
        push(f);
        f->ch[1] = merge(f->ch[1], s);
        recalc(f);
        return f;
    }
    else{
        push(s);
        s->ch[0] = merge(f, s->ch[0]);
        recalc(s);
        return s;
    }
}
treap* add_range(treap *t, int l, int r, ll val){ // all with k >= l && k < r add val 
    auto pa = split(t, l);
    auto pa2 = split(pa.ss, r);
    if(pa2.ff != NULL){
        pa2.ff->val += val;
        pa2.ff->lazy += val;
        pa2.ff->maxi += val;
    }
    pa.ss = merge(pa2.ff, pa2.ss);
    treap* res = merge(pa.ff, pa.ss);
    return res;
}
treap* get_prev_key(treap *t, int k, ll &val){
    auto pa = split(t, k);
    if(pa.ff != NULL)
        val = pa.ff->maxi;
    return merge(pa.ff, pa.ss);
}
treap* get_key(treap* t, int k, ll &val){
    auto pa = split(t, k);
    auto pa2 = split(pa.ss, k + 1);
    if(pa2.ff != NULL) 
        val = pa2.ff->val;
    pa.ss = merge(pa2.ff, pa2.ss);
    return merge(pa.ff, pa.ss);
}
treap* insert(treap* t, treap *nv){
    if(t == NULL) return nv;
    ll val = -1;
    t = get_key(t, nv->key, val);
    if(val != -1)
        return t;
    auto pa = split(t, nv->key);
    pa.ff = merge(pa.ff, nv);
    return merge(pa.ff, pa.ss);
}
treap* normalizeutil(treap *t, ll val){
    if(t == NULL)
        return NULL;
    push(t);
    if(t->val <= val){
        return normalizeutil(t->ch[1], val);
    }
    t->ch[0] = normalizeutil(t->ch[0], val);
    recalc(t);
    return t;
}
treap* normalize(treap *t, ll val){
    if(t == NULL)
        return NULL;
    if(t->maxi <= val) 
        return NULL;
    return normalizeutil(t, val); 
}
void traverse(treap *t, vector<array<ll, 2>> &v){
    if(t == NULL)
        return;
    push(t);
    traverse(t->ch[0], v); 
    v.pb({t->key, t->val});
    traverse(t->ch[1], v);
}
void print(treap *t){
    vector<array<ll, 2>> els;
    traverse(t, els);
    REP(i, els.size()){
        cout << "[" << els[i][0] << " " << els[i][1] << "], ";
    }
    cout << "\n";
}
vector<array<ll, 2>> get(treap *t){
    vector<array<ll, 2>> els;
    traverse(t, els);
    return els; 
}
int main(){
    ios_base::sync_with_stdio(false);
    cin.tie(0);
    int n, m, k;
    cin >> n >> m >> k;
    vector<vector<int>> g(n);
    FOR(i, 1, n, 1){
        int p;
        cin >> p;
        p--;
        g[p].pb(i);
    }
    array<ll, 2> nl = {-1, -1};
    vector<array<ll, 2>> fruits(n, nl);
    REP(i, m){
        int v, d, w;
        cin >> v >> d >> w;
        v--;
        fruits[v] = {d, w}; 
    }
    vector<treap*> dp(n, NULL);
    function<void(int)> dfs = [&](int v){
        for(int x : g[v]){
            dfs(x);
        }
        FOR(i, 1, g[v].size(), 1){
            if(getcnt(dp[g[v][i]]) > getcnt(dp[g[v][0]])){
                swap(g[v][i], g[v][0]);
                swap(dp[g[v][i]], dp[g[v][0]]);
            }
        }
        if(g[v].size() > 0)
            swap(dp[v], dp[g[v][0]]); // first merge children, then current fruit   
        FOR(i, 1, g[v].size(), 1){
            vector<array<ll, 2>> tv; // traversal
            traverse(dp[g[v][i]], tv);
            for(auto x : tv){
                ll val = -1;
                dp[v] = get_key(dp[v], x[0], val);
                if(val == -1){
                    val = 0;
                    dp[v] = get_prev_key(dp[v], x[0], val);
                    dp[v] = insert(dp[v], new treap(x[0], val));
                }
            }
            ll maxi = 0;
            REP(j, tv.size()){
                if(j != 0){
                    dp[v] = add_range(dp[v], tv[j - 1][0], tv[j][0], maxi);
                }
                maxi = max(maxi, tv[j][1]);
            }
            if(tv.size() > 0) {
                dp[v] = add_range(dp[v], tv.back()[0], INF + 5, maxi);
            }
        }
        // merge current fruit
        if(fruits[v] != nl){
            ll val = -1;
            auto x = fruits[v];
            dp[v] = get_key(dp[v], x[0], val);
            if(val == -1){
                val = 0;
                dp[v] = get_prev_key(dp[v], x[0], val);
                dp[v] = insert(dp[v], new treap(x[0], val));
            }
            dp[v] = add_range(dp[v], x[0], x[0] + 1, x[1]);
            auto pa = split(dp[v], x[0] + 1);
            pa.ss = normalize(pa.ss, val + x[1]);
            dp[v] = merge(pa.ff, pa.ss);
        } 
        //cout << v << " ";
        //print(dp[v]);
    };
    dfs(0);
    ll ans = 0;
    dp[0] = get_prev_key(dp[0], INF + 10, ans);
    cout << ans << "\n";
    return 0;
}

Compilation message

magictree.cpp: In function 'void print(treap*)':
magictree.cpp:3:44: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<std::array<long long int, 2> >::size_type' {aka 'long unsigned int'} [-Wsign-compare]
    3 | #define FOR(i, j, k, l) for(int i = (j); i < (k); i += (l))
      |                                            ^
magictree.cpp:5:19: note: in expansion of macro 'FOR'
    5 | #define REP(i, n) FOR(i, 0, n, 1)
      |                   ^~~
magictree.cpp:159:5: note: in expansion of macro 'REP'
  159 |     REP(i, els.size()){
      |     ^~~
magictree.cpp: In lambda function:
magictree.cpp:3:44: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
    3 | #define FOR(i, j, k, l) for(int i = (j); i < (k); i += (l))
      |                                            ^
magictree.cpp:194:9: note: in expansion of macro 'FOR'
  194 |         FOR(i, 1, g[v].size(), 1){
      |         ^~~
magictree.cpp:3:44: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
    3 | #define FOR(i, j, k, l) for(int i = (j); i < (k); i += (l))
      |                                            ^
magictree.cpp:202:9: note: in expansion of macro 'FOR'
  202 |         FOR(i, 1, g[v].size(), 1){
      |         ^~~
magictree.cpp:3:44: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<std::array<long long int, 2> >::size_type' {aka 'long unsigned int'} [-Wsign-compare]
    3 | #define FOR(i, j, k, l) for(int i = (j); i < (k); i += (l))
      |                                            ^
magictree.cpp:5:19: note: in expansion of macro 'FOR'
    5 | #define REP(i, n) FOR(i, 0, n, 1)
      |                   ^~~
magictree.cpp:215:13: note: in expansion of macro 'REP'
  215 |             REP(j, tv.size()){
      |             ^~~
# Verdict Execution time Memory Grader output
1 Correct 0 ms 204 KB Output is correct
2 Correct 1 ms 204 KB Output is correct
3 Correct 1 ms 204 KB Output is correct
4 Correct 0 ms 204 KB Output is correct
5 Correct 0 ms 204 KB Output is correct
6 Correct 0 ms 204 KB Output is correct
7 Correct 1 ms 204 KB Output is correct
8 Correct 1 ms 204 KB Output is correct
9 Correct 0 ms 204 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 266 ms 16460 KB Output is correct
2 Correct 133 ms 17824 KB Output is correct
3 Correct 1266 ms 55448 KB Output is correct
4 Correct 371 ms 16744 KB Output is correct
5 Correct 390 ms 19076 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 460 KB Output is correct
2 Correct 2 ms 460 KB Output is correct
3 Correct 1 ms 460 KB Output is correct
4 Correct 95 ms 27660 KB Output is correct
5 Correct 140 ms 27744 KB Output is correct
6 Correct 298 ms 29980 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 135 ms 10720 KB Output is correct
2 Correct 122 ms 9500 KB Output is correct
3 Correct 100 ms 14884 KB Output is correct
4 Correct 75 ms 11048 KB Output is correct
5 Correct 70 ms 25900 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 204 KB Output is correct
2 Correct 1 ms 204 KB Output is correct
3 Correct 1 ms 204 KB Output is correct
4 Correct 0 ms 204 KB Output is correct
5 Correct 0 ms 204 KB Output is correct
6 Correct 0 ms 204 KB Output is correct
7 Correct 1 ms 204 KB Output is correct
8 Correct 1 ms 204 KB Output is correct
9 Correct 0 ms 204 KB Output is correct
10 Correct 182 ms 15464 KB Output is correct
11 Correct 164 ms 14132 KB Output is correct
12 Correct 118 ms 14932 KB Output is correct
13 Correct 82 ms 11024 KB Output is correct
14 Correct 95 ms 25608 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 9 ms 1868 KB Output is correct
2 Correct 53 ms 7488 KB Output is correct
3 Correct 57 ms 7544 KB Output is correct
4 Correct 64 ms 7596 KB Output is correct
5 Correct 15 ms 5708 KB Output is correct
6 Correct 63 ms 10564 KB Output is correct
7 Correct 41 ms 14392 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 204 KB Output is correct
2 Correct 1 ms 204 KB Output is correct
3 Correct 1 ms 204 KB Output is correct
4 Correct 0 ms 204 KB Output is correct
5 Correct 0 ms 204 KB Output is correct
6 Correct 0 ms 204 KB Output is correct
7 Correct 1 ms 204 KB Output is correct
8 Correct 1 ms 204 KB Output is correct
9 Correct 0 ms 204 KB Output is correct
10 Correct 1 ms 460 KB Output is correct
11 Correct 2 ms 460 KB Output is correct
12 Correct 1 ms 460 KB Output is correct
13 Correct 95 ms 27660 KB Output is correct
14 Correct 140 ms 27744 KB Output is correct
15 Correct 298 ms 29980 KB Output is correct
16 Correct 182 ms 15464 KB Output is correct
17 Correct 164 ms 14132 KB Output is correct
18 Correct 118 ms 14932 KB Output is correct
19 Correct 82 ms 11024 KB Output is correct
20 Correct 95 ms 25608 KB Output is correct
21 Correct 87 ms 5460 KB Output is correct
22 Correct 280 ms 18324 KB Output is correct
23 Correct 463 ms 23212 KB Output is correct
24 Correct 708 ms 33896 KB Output is correct
25 Correct 336 ms 16068 KB Output is correct
26 Correct 1090 ms 50452 KB Output is correct
27 Correct 363 ms 23788 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 204 KB Output is correct
2 Correct 1 ms 204 KB Output is correct
3 Correct 1 ms 204 KB Output is correct
4 Correct 0 ms 204 KB Output is correct
5 Correct 0 ms 204 KB Output is correct
6 Correct 0 ms 204 KB Output is correct
7 Correct 1 ms 204 KB Output is correct
8 Correct 1 ms 204 KB Output is correct
9 Correct 0 ms 204 KB Output is correct
10 Correct 266 ms 16460 KB Output is correct
11 Correct 133 ms 17824 KB Output is correct
12 Correct 1266 ms 55448 KB Output is correct
13 Correct 371 ms 16744 KB Output is correct
14 Correct 390 ms 19076 KB Output is correct
15 Correct 1 ms 460 KB Output is correct
16 Correct 2 ms 460 KB Output is correct
17 Correct 1 ms 460 KB Output is correct
18 Correct 95 ms 27660 KB Output is correct
19 Correct 140 ms 27744 KB Output is correct
20 Correct 298 ms 29980 KB Output is correct
21 Correct 135 ms 10720 KB Output is correct
22 Correct 122 ms 9500 KB Output is correct
23 Correct 100 ms 14884 KB Output is correct
24 Correct 75 ms 11048 KB Output is correct
25 Correct 70 ms 25900 KB Output is correct
26 Correct 182 ms 15464 KB Output is correct
27 Correct 164 ms 14132 KB Output is correct
28 Correct 118 ms 14932 KB Output is correct
29 Correct 82 ms 11024 KB Output is correct
30 Correct 95 ms 25608 KB Output is correct
31 Correct 9 ms 1868 KB Output is correct
32 Correct 53 ms 7488 KB Output is correct
33 Correct 57 ms 7544 KB Output is correct
34 Correct 64 ms 7596 KB Output is correct
35 Correct 15 ms 5708 KB Output is correct
36 Correct 63 ms 10564 KB Output is correct
37 Correct 41 ms 14392 KB Output is correct
38 Correct 87 ms 5460 KB Output is correct
39 Correct 280 ms 18324 KB Output is correct
40 Correct 463 ms 23212 KB Output is correct
41 Correct 708 ms 33896 KB Output is correct
42 Correct 336 ms 16068 KB Output is correct
43 Correct 1090 ms 50452 KB Output is correct
44 Correct 363 ms 23788 KB Output is correct
45 Correct 86 ms 5796 KB Output is correct
46 Correct 287 ms 19820 KB Output is correct
47 Correct 396 ms 23008 KB Output is correct
48 Correct 787 ms 37984 KB Output is correct
49 Correct 331 ms 16832 KB Output is correct
50 Correct 1195 ms 52708 KB Output is correct
51 Correct 408 ms 26120 KB Output is correct