Submission #417153

#TimeUsernameProblemLanguageResultExecution timeMemory
417153KoDComparing Plants (IOI20_plants)C++17
32 / 100
987 ms19452 KiB
#include <bits/stdc++.h> #include "plants.h" template <class T> using Vec = std::vector<T>; constexpr int INF = 1000000000; struct Monoid { int min; explicit constexpr Monoid(const int m): min(m) {} static constexpr Monoid zero() { return Monoid(INF); } constexpr Monoid operator + (const Monoid& other) const { return Monoid(std::min(min, other.min)); } }; struct Effector { int add; explicit constexpr Effector(const int a): add(a) {} static constexpr Effector one() { return Effector(0); } constexpr Effector operator * (const Effector& other) const { return Effector(add + other.add); } }; constexpr Monoid operator * (const Monoid& m, const Effector& e) { return Monoid(m.min + e.add); } struct Segtree { struct Node { Monoid mn; Effector ef; }; int size, log; Vec<Node> data; void fetch(const int k) { assert(1 <= k and k < size); data[k].mn = data[2 * k].mn + data[2 * k + 1].mn; } void apply(const int k, const Effector& e) { assert(1 <= k and k < 2 * size); data[k].mn = data[k].mn * e; data[k].ef = data[k].ef * e; } void flush(const int k) { assert(k < size); assert(1 <= k); apply(2 * k, data[k].ef); apply(2 * k + 1, data[k].ef); data[k].ef = Effector::one(); } void push(const int k) { const int lsb = __builtin_ctz(k); const int width = 31 - __builtin_clz(k); for (int d = width; d > lsb; --d) { flush(k >> d); } } void pull(int k) { k >>= __builtin_ctz(k); while (k > 1) { k >>= 1; fetch(k); } } Segtree(const Vec<int>& vec) { log = 0; while ((1 << log) < (int) vec.size()) { log += 1; } size = 1 << log; data.assign(2 * size, Node{Monoid::zero(), Effector::one()}); for (int i = 0; i < (int) vec.size(); ++i) { data[i + size].mn = Monoid(vec[i]); } for (int i = size - 1; i > 0; --i) { fetch(i); } } void add(int l, int r, const int x) { l += size; r += size; push(l); push(r); const Effector e(x); for (int l0 = l, r0 = r; l0 < r0; l0 >>= 1, r0 >>= 1) { if (l0 & 1) apply(l0++, e); if (r0 & 1) apply(--r0, e); } pull(l); pull(r); } void enum_zero(Vec<int>& list) { auto dfs = [&](auto&& dfs, const int k) { if (data[k].mn.min != 0) { return; } if (k < size) { flush(k); dfs(dfs, 2 * k); dfs(dfs, 2 * k + 1); } else { list.push_back(k - size); } }; dfs(dfs, 1); } void assign(int i, const int v) { i += size; push(i); push(i + 1); data[i].mn = Monoid(v); pull(i); pull(i + 1); } }; int Type; Vec<int> restore; Vec<Vec<std::pair<int, int>>> belong; void init(int k, Vec<int> r) { const int n = (int) r.size(); if (k == 2) { Type = 1; int b = 0; belong.resize(n); for (int i = 0; i < n; ++i) { if (r[i] == 1 and r[(i + n - 1) % n] == 0) { int j = i, k = 0; while (true) { belong[j].emplace_back(b, k); std::cerr << j << ' '; j -= 1; k += 1; if (j < 0) { j += n; } if (r[j] == 1) { break; } } std::cerr << std::endl; b += 1; j = i, k = 0; while (true) { belong[j].emplace_back(b, k); std::cerr << j << ' '; if (r[j] == 0) { break; } j += 1; k += 1; if (j >= n) { j -= n; } } b += 1; std::cerr << std::endl; } } } else if (2 * k > n) { Type = 2; restore.resize(n); Segtree seg(r); std::set<int> zero; const auto near_l = [&](const int x) { auto itr = zero.lower_bound(x); return itr == zero.begin() ? *zero.rbegin() : *std::prev(itr); }; const auto near_r = [&](const int x) { auto itr = zero.upper_bound(x); return itr == zero.end() ? *zero.begin() : *itr; }; int cand = -1; const auto dist = [&](const int l, const int r) { return l < r ? r - l : r + n - l; }; for (int max = n - 1; max >= 0; --max) { Vec<int> add; seg.enum_zero(add); for (const auto x: add) { seg.assign(x, INF); zero.insert(x); } const auto idx = [&] { for (const auto x: add) { if (dist(near_l(x), x) >= k) { return x; } } return cand; }(); restore[idx] = max; if (idx >= k - 1) { seg.add(idx - k + 1, idx, -1); } else { seg.add(0, idx, -1); seg.add(n - (k - idx - 1), n, -1); } zero.erase(idx); cand = zero.empty() ? -1 : near_r(idx); } for (const auto x: restore) { std::cerr << x << ' '; } std::cerr << std::endl; } } int compare_plants(int x, int y) { if (Type == 1) { for (const auto [a, b]: belong[x]) { for (const auto [c, d]: belong[y]) { if (a == c) { return b > d ? 1 : -1; } } } return 0; } else if (Type == 2) { return restore[x] > restore[y] ? 1 : -1; } return 0; }
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...