Submission #405553

# Submission time Handle Problem Language Result Execution time Memory
405553 2021-05-16T14:24:07 Z flappybird Unique Cities (JOI19_ho_t5) C++14
4 / 100
2000 ms 144916 KB
#include <bits/stdc++.h>
#include <unordered_map>
#pragma GCC optimize("O3")
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")
using namespace std;
typedef long long ll;
typedef pair<ll, ll> pll;
#define MAX 201010
#define MAXS 18
#define INF 1000000000000000001
#define bb ' '
#define ln '\n'
struct segtree {
	ll N;
	ll s;
	vector<ll> tree, l, r;
	void update(ll x, ll a) {
		x += s - 1;
		tree[x] = a;
		x /= 2;
		while (x) tree[x] = max(tree[x * 2], tree[x * 2 + 1]), x /= 2;
	}
	ll query(ll low, ll high, ll loc = 1) {
		if (l[loc] == low && r[loc] == high) return tree[loc];
		if (r[loc * 2] >= high) return query(low, high, loc * 2);
		if (l[loc * 2 + 1] <= low) return query(low, high, loc * 2 + 1);
		return max(query(low, r[loc * 2], loc * 2), query(l[loc * 2 + 1], high, loc * 2 + 1));
	}
	void init(ll x = 1) {
		if (x >= s) {
			l[x] = r[x] = x - s + 1;
			return;
		}
		init(x * 2);
		init(x * 2 + 1);
		l[x] = l[x * 2];
		r[x] = r[x * 2 + 1];
	}
	segtree(ll n) {
		N = n;
		s = (ll)1 << (ll)ceil(log2(N));
		tree.resize(2 * s + 1);
		l.resize(2 * s + 1);
		r.resize(2 * s + 1);
		init();
	}
};
vector<ll> adj[MAX], sav[MAX], savdis[MAX], rev[MAX];
ll dir[MAX], ddir[MAX], dddir[MAX];
vector<vector<ll>> chain;
vector<set<ll>> subtree, revtree;
vector<segtree> chainseg;
ll C[MAX], depth[MAX], mxdepv[MAX], prtval[MAX];
ll mxdep[MAX];
pll range[MAX];
ll sp[MAX][MAXS];
ll cnt;
ll num[MAX];
pll cnum[MAX];
ll ans[MAX];
ll arr[MAX];
ll init(ll x, ll p = 0, ll d = 0) {
	sp[x][0] = p;
	ll i;
	for (i = 1; i < MAXS; i++) sp[x][i] = sp[sp[x][i - 1]][i - 1];
	depth[x] = d;
	ll sum = 1;
	sav[x].resize(adj[x].size());
	savdis[x].resize(adj[x].size());
	rev[x].resize(adj[x].size());
	for (auto v : adj[x]) {
		if (v == p) continue;
		sum += init(v, x, d + 1);
	}
	return num[x] = sum;
}
void calc(ll x, ll p = 0) {
	ll i;
	ll mx = 0;
	mxdepv[x] = x;
	for (i = 0; i < adj[x].size(); i++) {
		if (adj[x][i] == p) continue;
		calc(adj[x][i], x);
		if (mx < depth[mxdepv[adj[x][i]]]) mx = depth[mxdepv[adj[x][i]]], mxdepv[x] = mxdepv[adj[x][i]];
		sav[x][i] = mxdepv[adj[x][i]];
		savdis[x][i] = depth[sav[x][i]] - depth[x];
	}
	ll cnt = 0;
	ll vv, vvv;
	vv = vvv = -1;
	ll nv = -1;
	ll nmx = 0;
	for (auto v : adj[x]) {
		if (v == p) continue;
		if (depth[mxdepv[v]] == mx) cnt++, vvv = vv, vv = v;
		else if (depth[mxdepv[v]] > nmx) nmx = depth[mxdepv[v]], nv = v;
	}
	if (cnt >= 2) {
		for (i = 0; i < adj[x].size(); i++) {
			if (adj[x][i] != p) {
				rev[x][i] = (adj[x][i] == vv ? vvv : vv);
			}
		}
	}
	else {
		for (i = 0; i < adj[x].size(); i++) {
			if (adj[x][i] != p) {
				rev[x][i] = (adj[x][i] == vv ? nv : vv);
			}
		}
	}
	for (i = 0; i < adj[x].size(); i++) {
		if (adj[x][i] == p) continue;
		if (rev[x][i] == -1) rev[x][i] = x;
		else rev[x][i] = mxdepv[rev[x][i]];
	}
}
void make_chain(ll x, ll p = 0) {
	ll mx, mv;
	mx = mv = 0;
	chain[cnt].push_back(x);
	cnum[x] = { cnt, chain[cnt].size() - 1 };
	for (auto v : adj[x]) {
		if (v == p) continue;
		if (mx < num[v]) mx = num[v], mv = v;
	}
	if (mv) make_chain(mv, x);
	for (auto v : adj[x]) {
		if (v == p || v == mv) continue;
		cnt++;
		chain.push_back(vector<ll>());
		make_chain(v, x);
	}
}
void make_tree() {
	ll i;
	for (i = 0; i < chain.size(); i++) chainseg.push_back(segtree(chain[i].size()));
}
void update(ll v, ll x) {
	chainseg[cnum[v].first].update(cnum[v].second + 1, x);
}
//1을 루트로 하는 LCA
ll lca(ll u, ll v) {
	if (depth[u] != depth[v]) {
		if (depth[u] < depth[v]) swap(u, v);
		ll i;
		for (i = MAXS - 1; i >= 0; i--) if (depth[sp[u][i]] >= depth[v]) u = sp[u][i];
	}
	if (u == v) return u;
	ll i;
	for (i = MAXS - 1; i >= 0; i--) if (sp[u][i] != sp[v][i]) u = sp[u][i], v = sp[v][i];
	return sp[v][0];
}
//HLD query
ll mxval(ll u, ll v) {
	ll ans = 0;
	ll l = lca(u, v);
	while (cnum[u].first != cnum[l].first) ans = max(ans, chainseg[cnum[u].first].query(1, cnum[u].second + 1)), u = sp[chain[cnum[u].first][0]][0];
	while (cnum[v].first != cnum[l].first) ans = max(ans, chainseg[cnum[v].first].query(1, cnum[v].second + 1)), v = sp[chain[cnum[v].first][0]][0];
	ans = max(ans, chainseg[cnum[l].first].query(cnum[l].second + 1, cnum[u].second + 1));
	ans = max(ans, chainseg[cnum[l].first].query(cnum[l].second + 1, cnum[v].second + 1));
	return ans;
}
//두 정점 사이 거리
ll dis(ll u, ll v) { return depth[u] + depth[v] - 2 * depth[lca(u, v)]; }
//r이 루트, v의 x번째 부모
ll prtx(ll r, ll v, ll x) {
	if (x == 0) return v;
	ll rv = dis(r, v);
	if (rv < x) return 0;
	ll l = lca(r, v);
	if (dis(l, v) < x) {
		ll d = rv - x;
		ll i;
		for (i = MAXS - 1; i >= 0; i--) if (d - (1 << i) >= 0) d -= (1 << i), r = sp[r][i];
		return r;
	}
	else {
		ll i;
		for (i = MAXS - 1; i >= 0; i--) if (x - (1 << i) >= 0) x -= (1 << i), v = sp[v][i];
		return v;
	}
}
ll getfar(ll v, ll ban) {
	if (dir[v] != ban) return dir[v];
	return ddir[v];
}
ll getfar(ll v, ll ban1, ll ban2) {
	if (ban1 > ban2) swap(ban1, ban2);
	if (ban2 == -1) return dir[v];
	if (ban1 == -1) return getfar(v, ban2);
	if (dir[v] != ban1 && dir[v] != ban2) return dir[v];
	if (ddir[v] != ban1 && ddir[v] != ban2) return ddir[v];
	return dddir[v];
}
ll getind(vector<ll>& v, ll c) {
	return lower_bound(v.begin(), v.end(), c) - v.begin();
}
//r1 : previous root
void prop(ll r1, ll r2) {
	if (ddir[r2] == -1) arr[r2] = savdis[r2][dir[r2]], update(r2, arr[r2]);
	else arr[r2] = savdis[r2][dir[r2]] + savdis[r2][ddir[r2]], update(r2, arr[r2]);
	ll ind = getind(adj[r1], r2);
	ll f1 = getfar(r1, ind);
	ll f2 = getfar(r1, ind, f1);
	if (f1 == -1) arr[r1] = 0, update(r1, 0);
	else if (f2 == -1) arr[r1] = savdis[r1][f1], update(r1, arr[r1]);
	else arr[r1] = savdis[r1][f1] + savdis[r1][f2], update(r1, arr[r1]);
}
void dfs(ll x, ll p = 0) {
	ll i;
	for (i = 0; i < adj[x].size(); i++) {
		ll fardir = getfar(adj[x][i], getind(adj[adj[x][i]], x));
		ll farv = sav[x][i];
		if (mxval(farv, adj[x][i]) >= savdis[x][i]) continue;
		ll xx = (savdis[x][i] - 1) / 2;
		ll root = prtx(x, farv, xx);
		if (lca(root, x) == root) revtree[prtx(x, root, 1)].insert(C[x]);
		else subtree[root].insert(C[x]);
	}
	for (auto v : adj[x]) {
		if (v == p) continue;
		ll p1, p2;
		p1 = arr[x];
		p2 = arr[v];
		prop(x, v);
		dfs(v, x);
		arr[x] = p1;
		arr[v] = p2;
		update(x, arr[x]);
		update(v, arr[v]);
	}
}
ll mp[MAX];
ll anscnt;
void getans(ll x, ll p = 0) {
	for (auto c : subtree[x]) {
		if (!mp[c]) anscnt++;
		mp[c]++;
	}
	for (auto c : revtree[x]) {
		mp[c]--;
		if (!mp[c]) anscnt--;
	}
	ans[x] = anscnt;
	for (auto v : adj[x]) {
		if (v == p) continue;
		getans(v, x);
	}
	for (auto c : revtree[x]) {
		if (!mp[c]) anscnt++;
		mp[c]++;
	}
	for (auto c : subtree[x]) {
		mp[c]--;
		if (!mp[c]) anscnt--;
	}
}
void calcp(ll x, ll p = 0) {
	if (x != 1) {
		ll tmp = getind(adj[x], p);
		if (p == 1) sav[x][tmp] = rev[p][getind(adj[p], x)];
		else {
			ll v1 = rev[p][getind(adj[p], x)];
			ll v2 = sav[p][getind(adj[p], sp[p][0])];
			if (v1 > v2) swap(v1, v2);
			if (dis(x, v1) >= dis(x, v2)) sav[x][tmp] = v1;
			else sav[x][tmp] = v2;
		}
		savdis[x][tmp] = dis(x, sav[x][tmp]);
	}
	for (auto v : adj[x]) if (v != p) calcp(v, x);
}
signed main() {
	ios::sync_with_stdio(false), cin.tie(0);
	depth[0] = -1;
	ll N, M;
	cin >> N >> M;
	ll i, j;
	ll a, b;
	for (i = 1; i < N; i++) cin >> a >> b, adj[a].push_back(b), adj[b].push_back(a);
	for (i = 1; i <= N; i++) cin >> C[i];
	for (i = 1; i <= N; i++) sort(adj[i].begin(), adj[i].end());
	init(1);
	calc(1);
	calcp(1);
	cnt = 0;
	chain.push_back(vector<ll>());
	make_chain(1);
	make_tree();
	for (i = 1; i <= N; i++) {
		ll mx = 0, mv = 0;
		dir[i] = ddir[i] = dddir[i] = -1;
		for (j = 0; j < adj[i].size(); j++) if (mx < savdis[i][j]) mx = savdis[i][j], dir[i] = j;
		mx = 0;
		for (j = 0; j < adj[i].size(); j++) {
			if (j == dir[i]) continue;
			if (mx < savdis[i][j]) mx = savdis[i][j], ddir[i] = j;
		}
		mx = 0;
		for (j = 0; j < adj[i].size(); j++) {
			if (j == dir[i] || j == ddir[i]) continue;
			if (mx < savdis[i][j]) mx = savdis[i][j], dddir[i] = j;
		}
		if (i != 1) {
			ll p = getind(adj[i], sp[i][0]);
			ll r = getfar(i, p);
			ll rr = getfar(i, p, r);
			ll xx = 0;
			if (r != -1) xx += savdis[i][r];
			if (rr != -1) xx += savdis[i][rr];
			arr[i] = xx;
			update(i, xx);
		}
		else {
			ll dd;
			dd = ddir[1];
			if (dd == -1) arr[1] = depth[sav[1][dir[1]]];
			else arr[1] = depth[sav[1][dd]] + depth[sav[1][dir[1]]];
			update(1, arr[1]);
		}
	}
	subtree.resize(N + 1);
	revtree.resize(N + 1);
	dfs(1);
	for (i = 1; i <= N; i++) {
		for (auto c : revtree[i]) {
			if (!mp[c]) anscnt++;
			mp[c]++;
		}
	}
	getans(1);
	for (i = 1; i <= N; i++) cout << ans[i] << ln;
}

Compilation message

joi2019_ho_t5.cpp: In function 'void calc(ll, ll)':
joi2019_ho_t5.cpp:82:16: warning: comparison of integer expressions of different signedness: 'll' {aka 'long long int'} and 'std::vector<long long int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
   82 |  for (i = 0; i < adj[x].size(); i++) {
      |              ~~^~~~~~~~~~~~~~~
joi2019_ho_t5.cpp:100:17: warning: comparison of integer expressions of different signedness: 'll' {aka 'long long int'} and 'std::vector<long long int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  100 |   for (i = 0; i < adj[x].size(); i++) {
      |               ~~^~~~~~~~~~~~~~~
joi2019_ho_t5.cpp:107:17: warning: comparison of integer expressions of different signedness: 'll' {aka 'long long int'} and 'std::vector<long long int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  107 |   for (i = 0; i < adj[x].size(); i++) {
      |               ~~^~~~~~~~~~~~~~~
joi2019_ho_t5.cpp:113:16: warning: comparison of integer expressions of different signedness: 'll' {aka 'long long int'} and 'std::vector<long long int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  113 |  for (i = 0; i < adj[x].size(); i++) {
      |              ~~^~~~~~~~~~~~~~~
joi2019_ho_t5.cpp: In function 'void make_tree()':
joi2019_ho_t5.cpp:138:16: warning: comparison of integer expressions of different signedness: 'll' {aka 'long long int'} and 'std::vector<std::vector<long long int> >::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  138 |  for (i = 0; i < chain.size(); i++) chainseg.push_back(segtree(chain[i].size()));
      |              ~~^~~~~~~~~~~~~~
joi2019_ho_t5.cpp: In function 'void dfs(ll, ll)':
joi2019_ho_t5.cpp:213:16: warning: comparison of integer expressions of different signedness: 'll' {aka 'long long int'} and 'std::vector<long long int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  213 |  for (i = 0; i < adj[x].size(); i++) {
      |              ~~^~~~~~~~~~~~~~~
joi2019_ho_t5.cpp:214:6: warning: unused variable 'fardir' [-Wunused-variable]
  214 |   ll fardir = getfar(adj[x][i], getind(adj[adj[x][i]], x));
      |      ^~~~~~
joi2019_ho_t5.cpp: In function 'int main()':
joi2019_ho_t5.cpp:295:17: warning: comparison of integer expressions of different signedness: 'll' {aka 'long long int'} and 'std::vector<long long int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  295 |   for (j = 0; j < adj[i].size(); j++) if (mx < savdis[i][j]) mx = savdis[i][j], dir[i] = j;
      |               ~~^~~~~~~~~~~~~~~
joi2019_ho_t5.cpp:297:17: warning: comparison of integer expressions of different signedness: 'll' {aka 'long long int'} and 'std::vector<long long int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  297 |   for (j = 0; j < adj[i].size(); j++) {
      |               ~~^~~~~~~~~~~~~~~
joi2019_ho_t5.cpp:302:17: warning: comparison of integer expressions of different signedness: 'll' {aka 'long long int'} and 'std::vector<long long int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  302 |   for (j = 0; j < adj[i].size(); j++) {
      |               ~~^~~~~~~~~~~~~~~
joi2019_ho_t5.cpp:293:14: warning: unused variable 'mv' [-Wunused-variable]
  293 |   ll mx = 0, mv = 0;
      |              ^~
# Verdict Execution time Memory Grader output
1 Correct 13 ms 19276 KB Output is correct
2 Correct 19 ms 20388 KB Output is correct
3 Correct 17 ms 19916 KB Output is correct
4 Correct 20 ms 20308 KB Output is correct
5 Correct 19 ms 20512 KB Output is correct
6 Correct 22 ms 20512 KB Output is correct
7 Correct 20 ms 20396 KB Output is correct
8 Correct 19 ms 20484 KB Output is correct
9 Correct 22 ms 20556 KB Output is correct
10 Correct 20 ms 20552 KB Output is correct
11 Correct 21 ms 20576 KB Output is correct
12 Correct 21 ms 20768 KB Output is correct
13 Correct 22 ms 20556 KB Output is correct
14 Correct 20 ms 20588 KB Output is correct
15 Correct 20 ms 20556 KB Output is correct
16 Correct 18 ms 20812 KB Output is correct
17 Correct 23 ms 20752 KB Output is correct
18 Correct 21 ms 20460 KB Output is correct
19 Correct 19 ms 20572 KB Output is correct
20 Correct 22 ms 20616 KB Output is correct
21 Correct 20 ms 20432 KB Output is correct
22 Correct 18 ms 20556 KB Output is correct
23 Correct 20 ms 20540 KB Output is correct
24 Correct 19 ms 20492 KB Output is correct
25 Correct 19 ms 20512 KB Output is correct
26 Correct 19 ms 20740 KB Output is correct
27 Correct 21 ms 20648 KB Output is correct
28 Correct 21 ms 20656 KB Output is correct
29 Correct 20 ms 20556 KB Output is correct
30 Correct 17 ms 20816 KB Output is correct
31 Correct 22 ms 20692 KB Output is correct
32 Correct 20 ms 20560 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 727 ms 90812 KB Output is correct
2 Correct 1242 ms 94696 KB Output is correct
3 Correct 170 ms 36420 KB Output is correct
4 Correct 1324 ms 143316 KB Output is correct
5 Execution timed out 2102 ms 140576 KB Time limit exceeded
6 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 1006 ms 119708 KB Output is correct
2 Execution timed out 2064 ms 144916 KB Time limit exceeded
3 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 13 ms 19276 KB Output is correct
2 Correct 19 ms 20388 KB Output is correct
3 Correct 17 ms 19916 KB Output is correct
4 Correct 20 ms 20308 KB Output is correct
5 Correct 19 ms 20512 KB Output is correct
6 Correct 22 ms 20512 KB Output is correct
7 Correct 20 ms 20396 KB Output is correct
8 Correct 19 ms 20484 KB Output is correct
9 Correct 22 ms 20556 KB Output is correct
10 Correct 20 ms 20552 KB Output is correct
11 Correct 21 ms 20576 KB Output is correct
12 Correct 21 ms 20768 KB Output is correct
13 Correct 22 ms 20556 KB Output is correct
14 Correct 20 ms 20588 KB Output is correct
15 Correct 20 ms 20556 KB Output is correct
16 Correct 18 ms 20812 KB Output is correct
17 Correct 23 ms 20752 KB Output is correct
18 Correct 21 ms 20460 KB Output is correct
19 Correct 19 ms 20572 KB Output is correct
20 Correct 22 ms 20616 KB Output is correct
21 Correct 20 ms 20432 KB Output is correct
22 Correct 18 ms 20556 KB Output is correct
23 Correct 20 ms 20540 KB Output is correct
24 Correct 19 ms 20492 KB Output is correct
25 Correct 19 ms 20512 KB Output is correct
26 Correct 19 ms 20740 KB Output is correct
27 Correct 21 ms 20648 KB Output is correct
28 Correct 21 ms 20656 KB Output is correct
29 Correct 20 ms 20556 KB Output is correct
30 Correct 17 ms 20816 KB Output is correct
31 Correct 22 ms 20692 KB Output is correct
32 Correct 20 ms 20560 KB Output is correct
33 Correct 727 ms 90812 KB Output is correct
34 Correct 1242 ms 94696 KB Output is correct
35 Correct 170 ms 36420 KB Output is correct
36 Correct 1324 ms 143316 KB Output is correct
37 Execution timed out 2102 ms 140576 KB Time limit exceeded
38 Halted 0 ms 0 KB -