Submission #405513

# Submission time Handle Problem Language Result Execution time Memory
405513 2021-05-16T13:42:59 Z flappybird Unique Cities (JOI19_ho_t5) C++14
4 / 100
2000 ms 132172 KB
#include <bits/stdc++.h>
#include <unordered_map>
#pragma GCC optimize("O3")
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")
#pragma GCC target("avx2,avx2,fma")
using namespace std;
typedef long long ll;
typedef pair<ll, ll> pll;
#define MAX 201010
#define MAXS 18
#define INF 1000000000000000001
#define bb ' '
#define ln '\n'
struct segtree {
	ll N;
	ll s;
	vector<ll> tree, l, r;
	void update(ll x, ll a) {
		x += s - 1;
		tree[x] = a;
		x /= 2;
		while (x) tree[x] = max(tree[x * 2], tree[x * 2 + 1]), x /= 2;
	}
	ll query(ll low, ll high, ll loc = 1) {
		if (l[loc] == low && r[loc] == high) return tree[loc];
		if (r[loc * 2] >= high) return query(low, high, loc * 2);
		if (l[loc * 2 + 1] <= low) return query(low, high, loc * 2 + 1);
		return max(query(low, r[loc * 2], loc * 2), query(l[loc * 2 + 1], high, loc * 2 + 1));
	}
	void init(ll x = 1) {
		if (x >= s) {
			l[x] = r[x] = x - s + 1;
			return;
		}
		init(x * 2);
		init(x * 2 + 1);
		l[x] = l[x * 2];
		r[x] = r[x * 2 + 1];
	}
	segtree(ll n) {
		N = n;
		s = (ll)1 << (ll)ceil(log2(N));
		tree.resize(2 * s + 1);
		l.resize(2 * s + 1);
		r.resize(2 * s + 1);
		init();
	}
};
vector<ll> adj[MAX], sav[MAX], rev[MAX];
ll dir[MAX], ddir[MAX], dddir[MAX];
vector<vector<ll>> chain;
vector<set<ll>> subtree, revtree;
vector<segtree> chainseg;
ll C[MAX], depth[MAX], mxdepv[MAX], prtval[MAX];
pll range[MAX];
ll sp[MAX][MAXS];
ll cnt;
ll num[MAX];
pll cnum[MAX];
ll ans[MAX];
ll arr[MAX];
ll init(ll x, ll p = 0, ll d = 0) {
	sp[x][0] = p;
	ll i;
	for (i = 1; i < MAXS; i++) sp[x][i] = sp[sp[x][i - 1]][i - 1];
	depth[x] = d;
	ll sum = 1;
	sav[x].resize(adj[x].size());
	rev[x].resize(adj[x].size());
	for (auto v : adj[x]) {
		if (v == p) continue;
		sum += init(v, x, d + 1);
	}
	return num[x] = sum;
}
void calc(ll x, ll p = 0) {
	ll i;
	ll mx = 0;
	mxdepv[x] = x;
	for (i = 0; i < adj[x].size(); i++) {
		if (adj[x][i] == p) continue;
		calc(adj[x][i], x);
		if (mx < depth[mxdepv[adj[x][i]]]) mx = depth[mxdepv[adj[x][i]]], mxdepv[x] = mxdepv[adj[x][i]];
		sav[x][i] = mxdepv[adj[x][i]];
	}
	ll cnt = 0;
	ll vv, vvv;
	vv = vvv = -1;
	ll nv = -1;
	ll nmx = 0;
	for (auto v : adj[x]) {
		if (v == p) continue;
		if (depth[mxdepv[v]] == mx) cnt++, vvv = vv, vv = v;
		else if (depth[mxdepv[v]] > nmx) nmx = depth[mxdepv[v]], nv = v;
	}
	if (cnt >= 2) {
		for (i = 0; i < adj[x].size(); i++) {
			if (adj[x][i] != p) {
				rev[x][i] = (adj[x][i] == vv ? vvv : vv);
			}
		}
	}
	else {
		for (i = 0; i < adj[x].size(); i++) {
			if (adj[x][i] != p) {
				rev[x][i] = (adj[x][i] == vv ? nv : vv);
			}
		}
	}
	for (i = 0; i < adj[x].size(); i++) {
		if (adj[x][i] == p) continue;
		if (rev[x][i] == -1) rev[x][i] = x;
		else rev[x][i] = mxdepv[rev[x][i]];
	}
}
void make_chain(ll x, ll p = 0) {
	ll mx, mv;
	mx = mv = 0;
	chain[cnt].push_back(x);
	cnum[x] = { cnt, chain[cnt].size() - 1 };
	for (auto v : adj[x]) {
		if (v == p) continue;
		if (mx < num[v]) mx = num[v], mv = v;
	}
	if (mv) make_chain(mv, x);
	for (auto v : adj[x]) {
		if (v == p || v == mv) continue;
		cnt++;
		chain.push_back(vector<ll>());
		make_chain(v, x);
	}
}
void make_tree() {
	ll i;
	for (i = 0; i < chain.size(); i++) chainseg.push_back(segtree(chain[i].size()));
}
void update(ll v, ll x) {
	chainseg[cnum[v].first].update(cnum[v].second + 1, x);
}
//1을 루트로 하는 LCA
ll lca(ll u, ll v) {
	if (depth[u] != depth[v]) {
		if (depth[u] < depth[v]) swap(u, v);
		ll i;
		for (i = MAXS - 1; i >= 0; i--) if (depth[sp[u][i]] >= depth[v]) u = sp[u][i];
	}
	if (u == v) return u;
	ll i;
	for (i = MAXS - 1; i >= 0; i--) if (sp[u][i] != sp[v][i]) u = sp[u][i], v = sp[v][i];
	return sp[v][0];
}
//HLD query
ll mxval(ll u, ll v) {
	ll ans = 0;
	ll l = lca(u, v);
	while (cnum[u].first != cnum[l].first) ans = max(ans, chainseg[cnum[u].first].query(1, cnum[u].second + 1)), u = sp[chain[cnum[u].first][0]][0];
	while (cnum[v].first != cnum[l].first) ans = max(ans, chainseg[cnum[v].first].query(1, cnum[v].second + 1)), v = sp[chain[cnum[v].first][0]][0];
	ans = max(ans, chainseg[cnum[l].first].query(cnum[l].second + 1, cnum[u].second + 1));
	ans = max(ans, chainseg[cnum[l].first].query(cnum[l].second + 1, cnum[v].second + 1));
	return ans;
}
//두 정점 사이 거리
ll dis(ll u, ll v) { return depth[u] + depth[v] - 2 * depth[lca(u, v)]; }
//r이 루트, v의 x번째 부모
ll prtx(ll r, ll v, ll x) {
	if (x == 0) return v;
	ll rv = dis(r, v);
	if (rv < x) return 0;
	ll l = lca(r, v);
	if (dis(l, v) < x) {
		ll d = rv - x;
		ll i;
		for (i = MAXS - 1; i >= 0; i--) if (d - (1 << i) >= 0) d -= (1 << i), r = sp[r][i];
		return r;
	}
	else {
		ll i;
		for (i = MAXS - 1; i >= 0; i--) if (x - (1 << i) >= 0) x -= (1 << i), v = sp[v][i];
		return v;
	}
}
ll getfar(ll v, ll ban) {
	if (dir[v] != ban) return dir[v];
	return ddir[v];
}
ll getfar(ll v, ll ban1, ll ban2) {
	if (ban1 > ban2) swap(ban1, ban2);
	if (ban2 == -1) return dir[v];
	if (ban1 == -1) return getfar(v, ban2);
	if (dir[v] != ban1 && dir[v] != ban2) return dir[v];
	if (ddir[v] != ban1 && ddir[v] != ban2) return ddir[v];
	return dddir[v];
}
ll getind(vector<ll>& v, ll c) {
	return lower_bound(v.begin(), v.end(), c) - v.begin();
}
//r1 : previous root
void prop(ll r1, ll r2) {
	if (ddir[r2] == -1) arr[r2] = dis(sav[r2][dir[r2]], r2), update(r2, arr[r2]);
	else arr[r2] = dis(r2, sav[r2][dir[r2]]) + dis(r2, sav[r2][ddir[r2]]), update(r2, arr[r2]);
	ll ind = getind(adj[r1], r2);
	ll f1 = getfar(r1, ind);
	ll f2 = getfar(r1, ind, f1);
	if (f1 == -1) arr[r1] = 0, update(r1, 0);
	else if (f2 == -1) arr[r1] = dis(r1, sav[r1][f1]), update(r1, arr[r1]);
	else arr[r1] = dis(r1, sav[r1][f1]) + dis(r1, sav[r1][f2]), update(r1, arr[r1]);
}
void dfs(ll x, ll p = 0) {
	ll i;
	for (i = 0; i < adj[x].size(); i++) {
		ll fardir = getfar(adj[x][i], getind(adj[adj[x][i]], x));
		ll farv = sav[x][i];
		ll fardis = dis(x, farv);
		if (mxval(farv, adj[x][i]) >= fardis) continue;
		ll xx = (fardis - 1) / 2;
		ll root = prtx(x, farv, xx);
		if (lca(root, x) == root) revtree[prtx(x, root, 1)].insert(C[x]);
		else subtree[root].insert(C[x]);
	}
	for (auto v : adj[x]) {
		if (v == p) continue;
		ll p1, p2;
		p1 = arr[x];
		p2 = arr[v];
		prop(x, v);
		dfs(v, x);
		arr[x] = p1;
		arr[v] = p2;
		update(x, arr[x]);
		update(v, arr[v]);
	}
}
ll mp[MAX];
ll anscnt;
void getans(ll x, ll p = 0) {
	for (auto c : subtree[x]) {
		if (!mp[c]) anscnt++;
		mp[c]++;
	}
	for (auto c : revtree[x]) {
		mp[c]--;
		if (!mp[c]) anscnt--;
	}
	ans[x] = anscnt;
	for (auto v : adj[x]) {
		if (v == p) continue;
		getans(v, x);
	}
	for (auto c : revtree[x]) {
		if (!mp[c]) anscnt++;
		mp[c]++;
	}
	for (auto c : subtree[x]) {
		mp[c]--;
		if (!mp[c]) anscnt--;
	}
}
void calcp(ll x, ll p = 0) {
	if (x != 1) {
		if (p == 1) sav[x][getind(adj[x], p)] = rev[p][getind(adj[p], x)];
		else {
			ll v1 = rev[p][getind(adj[p], x)];
			ll v2 = sav[p][getind(adj[p], sp[p][0])];
			if (v1 > v2) swap(v1, v2);
			if (dis(x, v1) >= dis(x, v2)) sav[x][getind(adj[x], p)] = v1;
			else sav[x][getind(adj[x], p)] = v2;
		}
	}
	for (auto v : adj[x]) if (v != p) calcp(v, x);
}
signed main() {
	ios::sync_with_stdio(false), cin.tie(0);
	depth[0] = -1;
	ll N, M;
	cin >> N >> M;
	ll i, j;
	ll a, b;
	for (i = 1; i < N; i++) cin >> a >> b, adj[a].push_back(b), adj[b].push_back(a);
	for (i = 1; i <= N; i++) cin >> C[i];
	for (i = 1; i <= N; i++) sort(adj[i].begin(), adj[i].end());
	init(1);
	calc(1);
	calcp(1);
	cnt = 0;
	chain.push_back(vector<ll>());
	make_chain(1);
	make_tree();
	for (i = 1; i <= N; i++) {
		ll mx = 0, mv = 0;
		dir[i] = ddir[i] = dddir[i] = -1;
		for (j = 0; j < adj[i].size(); j++) if (mx < dis(i, sav[i][j])) mx = dis(i, sav[i][j]), dir[i] = j;
		mx = 0;
		for (j = 0; j < adj[i].size(); j++) {
			if (j == dir[i]) continue;
			if (mx < dis(i, sav[i][j])) mx = dis(i, sav[i][j]), ddir[i] = j;
		}
		mx = 0;
		for (j = 0; j < adj[i].size(); j++) {
			if (j == dir[i] || j == ddir[i]) continue;
			if (mx < dis(i, sav[i][j])) mx = dis(i, sav[i][j]), dddir[i] = j;
		}
		if (i != 1) {
			ll p = getind(adj[i], sp[i][0]);
			ll r = getfar(i, p);
			ll rr = getfar(i, p, r);
			ll xx = 0;
			if (r != -1) xx += dis(i, sav[i][r]);
			if (rr != -1) xx += dis(i, sav[i][rr]);
			arr[i] = xx;
			update(i, xx);
		}
		else {
			ll dd;
			dd = ddir[1];
			if (dd == -1) arr[1] = depth[sav[1][dir[1]]];
			else arr[1] = depth[sav[1][dd]] + depth[sav[1][dir[1]]];
			update(1, arr[1]);
		}
	}
	subtree.resize(N + 1);
	revtree.resize(N + 1);
	dfs(1);
	for (i = 1; i <= N; i++) {
		for (auto c : revtree[i]) {
			if (!mp[c]) anscnt++;
			mp[c]++;
		}
	}
	getans(1);
	for (i = 1; i <= N; i++) cout << ans[i] << ln;
}

Compilation message

joi2019_ho_t5.cpp: In function 'void calc(ll, ll)':
joi2019_ho_t5.cpp:81:16: warning: comparison of integer expressions of different signedness: 'll' {aka 'long long int'} and 'std::vector<long long int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
   81 |  for (i = 0; i < adj[x].size(); i++) {
      |              ~~^~~~~~~~~~~~~~~
joi2019_ho_t5.cpp:98:17: warning: comparison of integer expressions of different signedness: 'll' {aka 'long long int'} and 'std::vector<long long int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
   98 |   for (i = 0; i < adj[x].size(); i++) {
      |               ~~^~~~~~~~~~~~~~~
joi2019_ho_t5.cpp:105:17: warning: comparison of integer expressions of different signedness: 'll' {aka 'long long int'} and 'std::vector<long long int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  105 |   for (i = 0; i < adj[x].size(); i++) {
      |               ~~^~~~~~~~~~~~~~~
joi2019_ho_t5.cpp:111:16: warning: comparison of integer expressions of different signedness: 'll' {aka 'long long int'} and 'std::vector<long long int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  111 |  for (i = 0; i < adj[x].size(); i++) {
      |              ~~^~~~~~~~~~~~~~~
joi2019_ho_t5.cpp: In function 'void make_tree()':
joi2019_ho_t5.cpp:136:16: warning: comparison of integer expressions of different signedness: 'll' {aka 'long long int'} and 'std::vector<std::vector<long long int> >::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  136 |  for (i = 0; i < chain.size(); i++) chainseg.push_back(segtree(chain[i].size()));
      |              ~~^~~~~~~~~~~~~~
joi2019_ho_t5.cpp: In function 'void dfs(ll, ll)':
joi2019_ho_t5.cpp:211:16: warning: comparison of integer expressions of different signedness: 'll' {aka 'long long int'} and 'std::vector<long long int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  211 |  for (i = 0; i < adj[x].size(); i++) {
      |              ~~^~~~~~~~~~~~~~~
joi2019_ho_t5.cpp:212:6: warning: unused variable 'fardir' [-Wunused-variable]
  212 |   ll fardir = getfar(adj[x][i], getind(adj[adj[x][i]], x));
      |      ^~~~~~
joi2019_ho_t5.cpp: In function 'int main()':
joi2019_ho_t5.cpp:292:17: warning: comparison of integer expressions of different signedness: 'll' {aka 'long long int'} and 'std::vector<long long int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  292 |   for (j = 0; j < adj[i].size(); j++) if (mx < dis(i, sav[i][j])) mx = dis(i, sav[i][j]), dir[i] = j;
      |               ~~^~~~~~~~~~~~~~~
joi2019_ho_t5.cpp:294:17: warning: comparison of integer expressions of different signedness: 'll' {aka 'long long int'} and 'std::vector<long long int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  294 |   for (j = 0; j < adj[i].size(); j++) {
      |               ~~^~~~~~~~~~~~~~~
joi2019_ho_t5.cpp:299:17: warning: comparison of integer expressions of different signedness: 'll' {aka 'long long int'} and 'std::vector<long long int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  299 |   for (j = 0; j < adj[i].size(); j++) {
      |               ~~^~~~~~~~~~~~~~~
joi2019_ho_t5.cpp:290:14: warning: unused variable 'mv' [-Wunused-variable]
  290 |   ll mx = 0, mv = 0;
      |              ^~
# Verdict Execution time Memory Grader output
1 Correct 8 ms 14544 KB Output is correct
2 Correct 17 ms 15564 KB Output is correct
3 Correct 14 ms 15180 KB Output is correct
4 Correct 19 ms 15508 KB Output is correct
5 Correct 18 ms 15720 KB Output is correct
6 Correct 20 ms 15792 KB Output is correct
7 Correct 18 ms 15624 KB Output is correct
8 Correct 17 ms 15692 KB Output is correct
9 Correct 18 ms 15692 KB Output is correct
10 Correct 19 ms 15672 KB Output is correct
11 Correct 19 ms 15692 KB Output is correct
12 Correct 16 ms 15948 KB Output is correct
13 Correct 21 ms 15772 KB Output is correct
14 Correct 19 ms 15784 KB Output is correct
15 Correct 18 ms 15692 KB Output is correct
16 Correct 17 ms 15948 KB Output is correct
17 Correct 20 ms 15888 KB Output is correct
18 Correct 20 ms 15692 KB Output is correct
19 Correct 18 ms 15692 KB Output is correct
20 Correct 23 ms 15820 KB Output is correct
21 Correct 19 ms 15660 KB Output is correct
22 Correct 17 ms 15692 KB Output is correct
23 Correct 21 ms 15724 KB Output is correct
24 Correct 19 ms 15692 KB Output is correct
25 Correct 22 ms 15720 KB Output is correct
26 Correct 17 ms 15876 KB Output is correct
27 Correct 21 ms 15816 KB Output is correct
28 Correct 20 ms 15912 KB Output is correct
29 Correct 26 ms 15692 KB Output is correct
30 Correct 18 ms 15948 KB Output is correct
31 Correct 21 ms 15800 KB Output is correct
32 Correct 23 ms 15716 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 909 ms 82196 KB Output is correct
2 Correct 1583 ms 86436 KB Output is correct
3 Correct 222 ms 30736 KB Output is correct
4 Correct 1635 ms 132172 KB Output is correct
5 Execution timed out 2097 ms 125272 KB Time limit exceeded
6 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 1300 ms 109880 KB Output is correct
2 Execution timed out 2102 ms 127620 KB Time limit exceeded
3 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 8 ms 14544 KB Output is correct
2 Correct 17 ms 15564 KB Output is correct
3 Correct 14 ms 15180 KB Output is correct
4 Correct 19 ms 15508 KB Output is correct
5 Correct 18 ms 15720 KB Output is correct
6 Correct 20 ms 15792 KB Output is correct
7 Correct 18 ms 15624 KB Output is correct
8 Correct 17 ms 15692 KB Output is correct
9 Correct 18 ms 15692 KB Output is correct
10 Correct 19 ms 15672 KB Output is correct
11 Correct 19 ms 15692 KB Output is correct
12 Correct 16 ms 15948 KB Output is correct
13 Correct 21 ms 15772 KB Output is correct
14 Correct 19 ms 15784 KB Output is correct
15 Correct 18 ms 15692 KB Output is correct
16 Correct 17 ms 15948 KB Output is correct
17 Correct 20 ms 15888 KB Output is correct
18 Correct 20 ms 15692 KB Output is correct
19 Correct 18 ms 15692 KB Output is correct
20 Correct 23 ms 15820 KB Output is correct
21 Correct 19 ms 15660 KB Output is correct
22 Correct 17 ms 15692 KB Output is correct
23 Correct 21 ms 15724 KB Output is correct
24 Correct 19 ms 15692 KB Output is correct
25 Correct 22 ms 15720 KB Output is correct
26 Correct 17 ms 15876 KB Output is correct
27 Correct 21 ms 15816 KB Output is correct
28 Correct 20 ms 15912 KB Output is correct
29 Correct 26 ms 15692 KB Output is correct
30 Correct 18 ms 15948 KB Output is correct
31 Correct 21 ms 15800 KB Output is correct
32 Correct 23 ms 15716 KB Output is correct
33 Correct 909 ms 82196 KB Output is correct
34 Correct 1583 ms 86436 KB Output is correct
35 Correct 222 ms 30736 KB Output is correct
36 Correct 1635 ms 132172 KB Output is correct
37 Execution timed out 2097 ms 125272 KB Time limit exceeded
38 Halted 0 ms 0 KB -