Submission #405471

# Submission time Handle Problem Language Result Execution time Memory
405471 2021-05-16T12:45:21 Z flappybird Unique Cities (JOI19_ho_t5) C++14
4 / 100
2000 ms 134480 KB
#include <bits/stdc++.h>
#include <unordered_map>
#pragma GCC optimize("O3")
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")
#pragma GCC target("avx2")
using namespace std;
typedef long long ll;
typedef pair<ll, ll> pll;
#define MAX 201010
#define MAXS 20
#define INF 1000000000000000001
#define bb ' '
#define ln '\n'
struct segtree {
	ll N;
	ll s;
	vector<ll> tree, l, r;
	void update(ll x, ll a) {
		x += s - 1;
		tree[x] = a;
		x /= 2;
		while (x) tree[x] = max(tree[x * 2], tree[x * 2 + 1]), x /= 2;
	}
	ll query(ll low, ll high, ll loc = 1) {
		if (l[loc] == low && r[loc] == high) return tree[loc];
		if (r[loc * 2] >= high) return query(low, high, loc * 2);
		if (l[loc * 2 + 1] <= low) return query(low, high, loc * 2 + 1);
		return max(query(low, r[loc * 2], loc * 2), query(l[loc * 2 + 1], high, loc * 2 + 1));
	}
	void init(ll x = 1) {
		if (x >= s) {
			l[x] = r[x] = x - s + 1;
			return;
		}
		init(x * 2);
		init(x * 2 + 1);
		l[x] = l[x * 2];
		r[x] = r[x * 2 + 1];
	}
	segtree(ll n) {
		N = n;
		s = 1LL << (ll)ceil(log2(N));
		tree.resize(2 * s + 1);
		l.resize(2 * s + 1);
		r.resize(2 * s + 1);
		init();
	}
};
vector<ll> adj[MAX], sav[MAX], rev[MAX];
ll dir[MAX], ddir[MAX], dddir[MAX];
vector<vector<ll>> chain;
vector<set<ll>> subtree, revtree;
vector<segtree> chainseg;
ll C[MAX], depth[MAX], mxdepv[MAX], prtval[MAX];
pll range[MAX];
ll sp[MAX][MAXS];
ll cnt;
ll num[MAX];
pll cnum[MAX];
ll ans[MAX];
ll init(ll x, ll p = 0, ll d = 0) {
	sp[x][0] = p;
	ll i;
	for (i = 1; i < MAXS; i++) sp[x][i] = sp[sp[x][i - 1]][i - 1];
	depth[x] = d;
	ll mx = 0;
	ll sum = 1;
	sav[x].resize(adj[x].size());
	rev[x].resize(adj[x].size());
	for (auto v : adj[x]) {
		if (v == p) continue;
		sum += init(v, x, d + 1);
	}
	return num[x] = sum;
}
void calc(ll x, ll p = 0) {
	ll i;
	ll mx = 0;
	mxdepv[x] = x;
	for (i = 0; i < adj[x].size(); i++) {
		if (adj[x][i] == p) continue;
		calc(adj[x][i], x);
		if (mx < depth[mxdepv[adj[x][i]]]) mx = depth[mxdepv[adj[x][i]]], mxdepv[x] = mxdepv[adj[x][i]];
		sav[x][i] = mxdepv[adj[x][i]];
	}
	ll cnt = 0;
	ll vv, vvv;
	vv = vvv = -1;
	ll nv = -1;
	ll nmx = 0;
	for (auto v : adj[x]) {
		if (v == p) continue;
		if (depth[mxdepv[v]] == mx) cnt++, vvv = vv, vv = v;
		else if (depth[mxdepv[v]] > nmx) nmx = depth[mxdepv[v]], nv = v;
	}
	if (cnt >= 2) {
		for (i = 0; i < adj[x].size(); i++) {
			if (adj[x][i] != p) {
				rev[x][i] = (adj[x][i] == vv ? vvv : vv);
			}
		}
	}
	else {
		for (i = 0; i < adj[x].size(); i++) {
			if (adj[x][i] != p) {
				rev[x][i] = (adj[x][i] == vv ? nv : vv);
			}
		}
	}
	for (i = 0; i < adj[x].size(); i++) {
		if (adj[x][i] == p) continue;
		if (rev[x][i] == -1) rev[x][i] = x;
		else rev[x][i] = mxdepv[rev[x][i]];
	}
}
void make_chain(ll x, ll p = 0) {
	ll mx, mv;
	mx = mv = 0;
	chain[cnt].push_back(x);
	cnum[x] = { cnt, chain[cnt].size() - 1 };
	for (auto v : adj[x]) {
		if (v == p) continue;
		if (mx < num[v]) mx = num[v], mv = v;
	}
	if (mv) make_chain(mv, x);
	for (auto v : adj[x]) {
		if (v == p || v == mv) continue;
		cnt++;
		chain.push_back(vector<ll>());
		make_chain(v, x);
	}
}
void make_tree() {
	ll i;
	for (i = 0; i < chain.size(); i++) chainseg.push_back(segtree(chain[i].size()));
}
void update(ll v, ll x) {
	chainseg[cnum[v].first].update(cnum[v].second + 1, x);
}
//1을 루트로 하는 LCA
ll lca(ll u, ll v) {
	if (depth[u] != depth[v]) {
		if (depth[u] < depth[v]) swap(u, v);
		ll i;
		for (i = MAXS - 1; i >= 0; i--) if (depth[sp[u][i]] >= depth[v]) u = sp[u][i];
	}
	if (u == v) return u;
	ll i;
	for (i = MAXS - 1; i >= 0; i--) if (sp[u][i] != sp[v][i]) u = sp[u][i], v = sp[v][i];
	return sp[v][0];
}
//HLD query
ll mxval(ll u, ll v) {
	ll ans = 0;
	ll l = lca(u, v);
	while (cnum[u].first != cnum[l].first) ans = max(ans, chainseg[cnum[u].first].query(1, cnum[u].second + 1)), u = sp[chain[cnum[u].first][0]][0];
	while (cnum[v].first != cnum[l].first) ans = max(ans, chainseg[cnum[v].first].query(1, cnum[v].second + 1)), v = sp[chain[cnum[v].first][0]][0];
	ans = max(ans, chainseg[cnum[l].first].query(cnum[l].second + 1, cnum[u].second + 1));
	ans = max(ans, chainseg[cnum[l].first].query(cnum[l].second + 1, cnum[v].second + 1));
	return ans;
}
//두 정점 사이 거리
ll dis(ll u, ll v) { return depth[u] + depth[v] - 2 * depth[lca(u, v)]; }
//r이 루트, v의 x번째 부모
ll prtx(ll r, ll v, ll x) {
	if (x == 0) return v;
	ll rv = dis(r, v);
	if (rv < x) return 0;
	ll l = lca(r, v);
	if (dis(l, v) < x) {
		ll d = rv - x;
		ll i;
		for (i = MAXS - 1; i >= 0; i--) if (d - (1 << i) >= 0) d -= (1 << i), r = sp[r][i];
		return r;
	}
	else {
		ll i;
		for (i = MAXS - 1; i >= 0; i--) if (x - (1 << i) >= 0) x -= (1 << i), v = sp[v][i];
		return v;
	}
}
ll getfar(ll v, ll ban) {
	if (dir[v] != ban) return dir[v];
	return ddir[v];
}
ll getfar(ll v, ll ban1, ll ban2) {
	if (ban1 > ban2) swap(ban1, ban2);
	if (ban2 == -1) return dir[v];
	if (ban1 == -1) return getfar(v, ban2);
	if (dir[v] != ban1 && dir[v] != ban2) return dir[v];
	if (ddir[v] != ban1 && ddir[v] != ban2) return ddir[v];
	return dddir[v];
}
ll getind(vector<ll>& v, ll c) {
	return lower_bound(v.begin(), v.end(), c) - v.begin();
}
//r1 : previous root
void prop(ll r1, ll r2) {
	if (ddir[r2] == -1) update(r2, dis(sav[r2][dir[r2]], r2));
	else update(r2, dis(r2, sav[r2][dir[r2]]) + dis(r2, sav[r2][ddir[r2]]));
	ll ind = getind(adj[r1], r2);
	ll f1 = getfar(r1, ind);
	ll f2 = getfar(r1, ind, f1);
	if (f1 == -1) update(r1, 0);
	else if (f2 == -1) update(r1, dis(r1, sav[r1][f1]));
	else update(r1, dis(r1, sav[r1][f1]) + dis(r1, sav[r1][f2]));
}
void dfs(ll x, ll p = 0) {
	ll i;
	for (i = 0; i < adj[x].size(); i++) {
		ll fardir = getfar(adj[x][i], getind(adj[adj[x][i]], x));
		ll farv = sav[x][i];
		ll fardis = dis(x, farv);
		ll res = mxval(farv, adj[x][i]);
		if (res >= fardis) continue;
		ll xx = (fardis - 1) / 2;
		ll root = prtx(x, farv, xx);
		if (lca(root, x) == root) revtree[prtx(x, root, 1)].insert(C[x]);
		else subtree[root].insert(C[x]);
	}
	for (auto v : adj[x]) {
		if (v == p) continue;
		prop(x, v);
		dfs(v, x);
		prop(v, x);
	}
}
ll mp[MAX];
ll anscnt;
void getans(ll x, ll p = 0) {
	for (auto c : subtree[x]) {
		if (!mp[c]) anscnt++;
		mp[c]++;
	}
	for (auto c : revtree[x]) {
		mp[c]--;
		if (!mp[c]) anscnt--;
	}
	ans[x] = anscnt;
	for (auto v : adj[x]) {
		if (v == p) continue;
		getans(v, x);
	}
	for (auto c : revtree[x]) {
		if (!mp[c]) anscnt++;
		mp[c]++;
	}
	for (auto c : subtree[x]) {
		mp[c]--;
		if (!mp[c]) anscnt--;
	}
}
void calcp(ll x, ll p = 0) {
	if (x != 1) {
		if (p == 1) sav[x][getind(adj[x], p)] = rev[p][getind(adj[p], x)];
		else {
			ll v1 = rev[p][getind(adj[p], x)];
			ll v2 = sav[p][getind(adj[p], sp[p][0])];
			if (v1 > v2) swap(v1, v2);
			if (dis(x, v1) >= dis(x, v2)) sav[x][getind(adj[x], p)] = v1;
			else sav[x][getind(adj[x], p)] = v2;
		}
	}
	for (auto v : adj[x]) if (v != p) calcp(v, x);
}
signed main() {
	ios::sync_with_stdio(false), cin.tie(0);
	depth[0] = -1;
	ll N, M;
	cin >> N >> M;
	ll i, j;
	ll a, b;
	for (i = 1; i < N; i++) cin >> a >> b, adj[a].push_back(b), adj[b].push_back(a);
	for (i = 1; i <= N; i++) cin >> C[i];
	for (i = 1; i <= N; i++) sort(adj[i].begin(), adj[i].end());
	init(1);
	calc(1);
	calcp(1);
	cnt = 0;
	chain.push_back(vector<ll>());
	make_chain(1);
	make_tree();
	for (i = 1; i <= N; i++) {
		ll mx = 0, mv = 0;
		dir[i] = ddir[i] = dddir[i] = -1;
		for (j = 0; j < adj[i].size(); j++) if (mx < dis(i, sav[i][j])) mx = dis(i, sav[i][j]), dir[i] = j;
		mx = 0;
		for (j = 0; j < adj[i].size(); j++) {
			if (j == dir[i]) continue;
			if (mx < dis(i, sav[i][j])) mx = dis(i, sav[i][j]), ddir[i] = j;
		}
		mx = 0;
		for (j = 0; j < adj[i].size(); j++) {
			if (j == dir[i] || j == ddir[i]) continue;
			if (mx < dis(i, sav[i][j])) mx = dis(i, sav[i][j]), dddir[i] = j;
		}
		if (i != 1) {
			ll p = getind(adj[i], sp[i][0]);
			ll r = getfar(i, p);
			ll rr = getfar(i, p, r);
			ll xx = 0;
			if (r != -1) xx += dis(i, sav[i][r]);
			if (rr != -1) xx += dis(i, sav[i][rr]);
			update(i, xx);
		}
		else {
			ll dd;
			dd = ddir[1];
			if (dd == -1) update(1, depth[sav[1][dir[1]]]);
			else update(1, depth[sav[1][dd]] + depth[sav[1][dir[1]]]);
		}
	}
	subtree.resize(N + 1);
	revtree.resize(N + 1);
	dfs(1);
	for (i = 1; i <= N; i++) {
		for (auto c : revtree[i]) {
			if (!mp[c]) anscnt++;
			mp[c]++;
		}
	}
	getans(1);
	for (i = 1; i <= N; i++) cout << ans[i] << ln;
}

Compilation message

joi2019_ho_t5.cpp: In function 'll init(ll, ll, ll)':
joi2019_ho_t5.cpp:67:5: warning: unused variable 'mx' [-Wunused-variable]
   67 |  ll mx = 0;
      |     ^~
joi2019_ho_t5.cpp: In function 'void calc(ll, ll)':
joi2019_ho_t5.cpp:81:16: warning: comparison of integer expressions of different signedness: 'll' {aka 'long long int'} and 'std::vector<long long int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
   81 |  for (i = 0; i < adj[x].size(); i++) {
      |              ~~^~~~~~~~~~~~~~~
joi2019_ho_t5.cpp:98:17: warning: comparison of integer expressions of different signedness: 'll' {aka 'long long int'} and 'std::vector<long long int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
   98 |   for (i = 0; i < adj[x].size(); i++) {
      |               ~~^~~~~~~~~~~~~~~
joi2019_ho_t5.cpp:105:17: warning: comparison of integer expressions of different signedness: 'll' {aka 'long long int'} and 'std::vector<long long int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  105 |   for (i = 0; i < adj[x].size(); i++) {
      |               ~~^~~~~~~~~~~~~~~
joi2019_ho_t5.cpp:111:16: warning: comparison of integer expressions of different signedness: 'll' {aka 'long long int'} and 'std::vector<long long int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  111 |  for (i = 0; i < adj[x].size(); i++) {
      |              ~~^~~~~~~~~~~~~~~
joi2019_ho_t5.cpp: In function 'void make_tree()':
joi2019_ho_t5.cpp:136:16: warning: comparison of integer expressions of different signedness: 'll' {aka 'long long int'} and 'std::vector<std::vector<long long int> >::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  136 |  for (i = 0; i < chain.size(); i++) chainseg.push_back(segtree(chain[i].size()));
      |              ~~^~~~~~~~~~~~~~
joi2019_ho_t5.cpp: In function 'void dfs(ll, ll)':
joi2019_ho_t5.cpp:211:16: warning: comparison of integer expressions of different signedness: 'll' {aka 'long long int'} and 'std::vector<long long int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  211 |  for (i = 0; i < adj[x].size(); i++) {
      |              ~~^~~~~~~~~~~~~~~
joi2019_ho_t5.cpp:212:6: warning: unused variable 'fardir' [-Wunused-variable]
  212 |   ll fardir = getfar(adj[x][i], getind(adj[adj[x][i]], x));
      |      ^~~~~~
joi2019_ho_t5.cpp: In function 'int main()':
joi2019_ho_t5.cpp:287:17: warning: comparison of integer expressions of different signedness: 'll' {aka 'long long int'} and 'std::vector<long long int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  287 |   for (j = 0; j < adj[i].size(); j++) if (mx < dis(i, sav[i][j])) mx = dis(i, sav[i][j]), dir[i] = j;
      |               ~~^~~~~~~~~~~~~~~
joi2019_ho_t5.cpp:289:17: warning: comparison of integer expressions of different signedness: 'll' {aka 'long long int'} and 'std::vector<long long int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  289 |   for (j = 0; j < adj[i].size(); j++) {
      |               ~~^~~~~~~~~~~~~~~
joi2019_ho_t5.cpp:294:17: warning: comparison of integer expressions of different signedness: 'll' {aka 'long long int'} and 'std::vector<long long int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  294 |   for (j = 0; j < adj[i].size(); j++) {
      |               ~~^~~~~~~~~~~~~~~
joi2019_ho_t5.cpp:285:14: warning: unused variable 'mv' [-Wunused-variable]
  285 |   ll mx = 0, mv = 0;
      |              ^~
# Verdict Execution time Memory Grader output
1 Correct 9 ms 14500 KB Output is correct
2 Correct 18 ms 15692 KB Output is correct
3 Correct 15 ms 15224 KB Output is correct
4 Correct 19 ms 15540 KB Output is correct
5 Correct 18 ms 15744 KB Output is correct
6 Correct 23 ms 15832 KB Output is correct
7 Correct 20 ms 15692 KB Output is correct
8 Correct 18 ms 15760 KB Output is correct
9 Correct 19 ms 15692 KB Output is correct
10 Correct 22 ms 15788 KB Output is correct
11 Correct 20 ms 15784 KB Output is correct
12 Correct 16 ms 15924 KB Output is correct
13 Correct 23 ms 15812 KB Output is correct
14 Correct 20 ms 15784 KB Output is correct
15 Correct 19 ms 15764 KB Output is correct
16 Correct 15 ms 16052 KB Output is correct
17 Correct 21 ms 16004 KB Output is correct
18 Correct 20 ms 15732 KB Output is correct
19 Correct 19 ms 15804 KB Output is correct
20 Correct 23 ms 15908 KB Output is correct
21 Correct 21 ms 15728 KB Output is correct
22 Correct 18 ms 15692 KB Output is correct
23 Correct 19 ms 15820 KB Output is correct
24 Correct 19 ms 15820 KB Output is correct
25 Correct 18 ms 15820 KB Output is correct
26 Correct 17 ms 15948 KB Output is correct
27 Correct 22 ms 15956 KB Output is correct
28 Correct 21 ms 15852 KB Output is correct
29 Correct 20 ms 15784 KB Output is correct
30 Correct 17 ms 16040 KB Output is correct
31 Correct 21 ms 15944 KB Output is correct
32 Correct 20 ms 15744 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 945 ms 83552 KB Output is correct
2 Correct 1693 ms 88020 KB Output is correct
3 Correct 256 ms 31376 KB Output is correct
4 Correct 1726 ms 134480 KB Output is correct
5 Execution timed out 2092 ms 127468 KB Time limit exceeded
6 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 1333 ms 111504 KB Output is correct
2 Execution timed out 2073 ms 128560 KB Time limit exceeded
3 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 9 ms 14500 KB Output is correct
2 Correct 18 ms 15692 KB Output is correct
3 Correct 15 ms 15224 KB Output is correct
4 Correct 19 ms 15540 KB Output is correct
5 Correct 18 ms 15744 KB Output is correct
6 Correct 23 ms 15832 KB Output is correct
7 Correct 20 ms 15692 KB Output is correct
8 Correct 18 ms 15760 KB Output is correct
9 Correct 19 ms 15692 KB Output is correct
10 Correct 22 ms 15788 KB Output is correct
11 Correct 20 ms 15784 KB Output is correct
12 Correct 16 ms 15924 KB Output is correct
13 Correct 23 ms 15812 KB Output is correct
14 Correct 20 ms 15784 KB Output is correct
15 Correct 19 ms 15764 KB Output is correct
16 Correct 15 ms 16052 KB Output is correct
17 Correct 21 ms 16004 KB Output is correct
18 Correct 20 ms 15732 KB Output is correct
19 Correct 19 ms 15804 KB Output is correct
20 Correct 23 ms 15908 KB Output is correct
21 Correct 21 ms 15728 KB Output is correct
22 Correct 18 ms 15692 KB Output is correct
23 Correct 19 ms 15820 KB Output is correct
24 Correct 19 ms 15820 KB Output is correct
25 Correct 18 ms 15820 KB Output is correct
26 Correct 17 ms 15948 KB Output is correct
27 Correct 22 ms 15956 KB Output is correct
28 Correct 21 ms 15852 KB Output is correct
29 Correct 20 ms 15784 KB Output is correct
30 Correct 17 ms 16040 KB Output is correct
31 Correct 21 ms 15944 KB Output is correct
32 Correct 20 ms 15744 KB Output is correct
33 Correct 945 ms 83552 KB Output is correct
34 Correct 1693 ms 88020 KB Output is correct
35 Correct 256 ms 31376 KB Output is correct
36 Correct 1726 ms 134480 KB Output is correct
37 Execution timed out 2092 ms 127468 KB Time limit exceeded
38 Halted 0 ms 0 KB -