This submission is migrated from previous version of oj.uz, which used different machine for grading. This submission may have different result if resubmitted.
#include <bits/stdc++.h>
using namespace std;
int main() {
ios::sync_with_stdio(0);
cin.tie(0);
int N, D;
cin >> N >> D;
vector<vector<int>> adj(N);
for (int i = 1; i < N; i++) {
int p;
cin >> p;
adj[p].emplace_back(i);
}
// Solution:
//
// Similar to: https://atcoder.jp/contests/xmascon16noon/tasks/xmascon16_h
//
// For each node, we save the maximum number of picked nodes, which
// also maximizes the minimum distance to current node. We additionally save the
// number of nodes which has that maximum minimum distance.
//
// Consider 2 children of current node. Assume from child[1], we pick 1 node,
// where the distance is a, and from the other child, we pick 2 nodes, where
// the distance to current node is p + x and q + x (distance between the 2 nodes
// is p + q).
//
// Then, we have p + q >= K. Moreover, if:
// a + x + p < K
// a + x + q < K
// p + q >= K
// Implies:
// 2a + 2x + (p + q) < 2K
// 2a + 2x < K
// a + x < K / 2
//
// Then, since p + q >= K -> max(p, q) >= K / 2
//
// So, a + x + p < K and a + x + q < K only happens when:
// p = q = K / 2
// a + x < K / 2
//
// If p > K / 2, then a + x + p >= K, so we using the
// explained data (maximum picked, distance to picked,
// count nodes with that distance) is enough.
//
// We can also note that, since p, q is from same child,
// then x >= 1. So, this a + x + p < K and a + x + q < K
// case can only happen when a < K / 2 - 1. But in this case,
// we can just not pick a to preserve the condition (by picking
// p and q) instead. So, we only need to keep the minimum distance
// instead.
//
// Time complexity: O(N).
int ans = 0;
const auto Dfs = [&](const auto &self, int u) -> int {
ans += 1; // pick current node
int dist = 0;
for (auto v : adj[u]) {
int other = self(self, v) + 1;
if (dist + other < D) {
ans -= 1; // we only need to decrease 1, by lemma above
dist = max(dist, other);
} else {
dist = min(dist, other);
}
}
return dist;
};
Dfs(Dfs, 0);
cout << ans << '\n';
return 0;
}
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |