Submission #403679

# Submission time Handle Problem Language Result Execution time Memory
403679 2021-05-13T11:10:48 Z KoD Collapse (JOI18_collapse) C++17
100 / 100
3572 ms 15836 KB
#include <bits/stdc++.h>
#include "collapse.h"

using i32 = std::int32_t;
using u32 = std::uint32_t;
using i64 = std::int64_t;
using u64 = std::uint64_t;
using i128 = __int128_t;
using u128 = __uint128_t;
using isize = std::ptrdiff_t;
using usize = std::size_t;

class rep {
    struct Iter {
        usize itr;
        constexpr Iter(const usize pos) noexcept : itr(pos) {}
        constexpr void operator++() noexcept { ++itr; }
        constexpr bool operator!=(const Iter& other) const noexcept { return itr != other.itr; }
        constexpr usize operator*() const noexcept { return itr; }
    };
    const Iter first, last;

  public:
    explicit constexpr rep(const usize first, const usize last) noexcept : first(first), last(std::max(first, last)) {}
    constexpr Iter begin() const noexcept { return first; }
    constexpr Iter end() const noexcept { return last; }
};

class RollbackUnionFind {
    std::vector<usize> data;
    std::stack<std::pair<usize, usize>> history;

  public:
    explicit RollbackUnionFind(const usize size = 0) : data(size, -1), history() {}

    usize size() const { return data.size(); }

    usize leader(usize u) const {
        assert(u < size());
        while (data[u] < size()) u = data[u];
        return u;
    }

    usize size(const usize u) const {
        assert(u < size());
        return -data[leader(u)];
    }

    std::pair<usize, bool> merge(usize u, usize v) {
        assert(u < size());
        assert(v < size());
        u = leader(u);
        v = leader(v);
        if (u == v) return std::make_pair(u, false);
        if (data[u] > data[v]) std::swap(u, v);
        history.emplace(u, data[u]);
        history.emplace(v, data[v]);
        data[u] += data[v];
        data[v] = u;
        return std::make_pair(u, true);
    }

    bool same(const usize u, const usize v) const {
        assert(u < size());
        assert(v < size());
        return leader(u) == leader(v);
    }

    void rollback(const usize steps) {
        assert(2 * steps <= history.size());
        for (usize i = 2 * steps; i > 0; --i) {
            const auto [k, x] = history.top();
            history.pop();
            data[k] = x;
        }
    }
};

template <class T> using Vec = std::vector<T>;

constexpr usize BSIZE = 400;

Vec<int> calc(const usize N, Vec<int> T, Vec<int> X, Vec<int> Y, Vec<int> W, Vec<int> P) {
    const auto C = T.size();
    const auto Q = W.size();
    Vec<std::pair<int, int>> edge;
    edge.reserve(C);
    for (const auto i : rep(0, C)) {
        if (X[i] > Y[i]) {
            std::swap(X[i], Y[i]);
        }
        edge.emplace_back(Y[i], X[i]);
    }
    std::sort(edge.begin(), edge.end());
    edge.erase(std::unique(edge.begin(), edge.end()), edge.end());
    Vec<usize> eid(C);
    for (const auto i : rep(0, C)) {
        eid[i] = std::lower_bound(edge.begin(), edge.end(), std::make_pair(Y[i], X[i])) - edge.begin();
    }
    const auto Blocks = (C + BSIZE - 1) / BSIZE;
    Vec<Vec<usize>> qid(Blocks);
    for (const auto i : rep(0, Q)) {
        qid[W[i] / BSIZE].push_back(i);
    }
    Vec<int> ret(Q);
    for (const auto block : rep(0, Blocks)) {
        const auto low = BSIZE * block;
        const auto high = std::min(C, low + BSIZE);
        auto& qs = qid[block];
        std::sort(qs.begin(), qs.end(), [&](const usize i, const usize j) { return P[i] < P[j]; });
        Vec<char> usage(edge.size()), changes(edge.size());
        for (const auto i : rep(0, low)) {
            usage[eid[i]] ^= 1;
        }
        for (const auto i : rep(low, high)) {
            changes[eid[i]] = true;
        }
        Vec<usize> naive;
        for (const auto i : rep(0, edge.size())) {
            if (changes[i]) {
                naive.push_back(i);
            }
        }
        RollbackUnionFind dsu(N);
        usize comps = N, seen = 0;
        for (const auto i : qs) {
            while (seen < edge.size() and edge[seen].first <= P[i]) {
                if (!changes[seen] and usage[seen]) {
                    comps -= dsu.merge(edge[seen].first, edge[seen].second).second;
                }
                seen += 1;
            }
            const auto memo = comps;
            for (const auto j : rep(low, W[i] + 1)) {
                usage[eid[j]] ^= 1;
            }
            for (const auto e : naive) {
                if (usage[e] and edge[e].first <= P[i]) {
                    comps -= dsu.merge(edge[e].first, edge[e].second).second;
                }
            }
            for (const auto j : rep(low, W[i] + 1)) {
                usage[eid[j]] ^= 1;
            }
            ret[i] = comps;
            dsu.rollback(memo - comps);
            comps = memo;
        }
    }
    return ret;
}

Vec<int> simulateCollapse(int N, Vec<int> T, Vec<int> X, Vec<int> Y, Vec<int> W, Vec<int> P) {
    const auto C = T.size();
    const auto Q = W.size();
    auto ret = calc(N, T, X, Y, W, P);
    for (const auto i : rep(0, C)) {
        X[i] = N - X[i] - 1;
        Y[i] = N - Y[i] - 1;
    }
    for (const auto i : rep(0, Q)) {
        P[i] = N - P[i] - 2;
    }
    const auto tmp = calc(N, T, X, Y, W, P);
    for (const auto i : rep(0, Q)) {
        ret[i] += tmp[i];
        ret[i] -= N;
    }
    return ret;
}
# Verdict Execution time Memory Grader output
1 Correct 25 ms 716 KB Output is correct
2 Correct 4 ms 460 KB Output is correct
3 Correct 7 ms 584 KB Output is correct
4 Correct 8 ms 460 KB Output is correct
5 Correct 28 ms 816 KB Output is correct
6 Correct 47 ms 832 KB Output is correct
7 Correct 4 ms 588 KB Output is correct
8 Correct 5 ms 588 KB Output is correct
9 Correct 33 ms 920 KB Output is correct
10 Correct 63 ms 944 KB Output is correct
11 Correct 77 ms 1020 KB Output is correct
12 Correct 72 ms 956 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 40 ms 5116 KB Output is correct
2 Correct 54 ms 5136 KB Output is correct
3 Correct 673 ms 11076 KB Output is correct
4 Correct 128 ms 5272 KB Output is correct
5 Correct 1016 ms 11428 KB Output is correct
6 Correct 735 ms 5332 KB Output is correct
7 Correct 1247 ms 11768 KB Output is correct
8 Correct 1185 ms 12292 KB Output is correct
9 Correct 44 ms 6416 KB Output is correct
10 Correct 71 ms 6380 KB Output is correct
11 Correct 875 ms 6424 KB Output is correct
12 Correct 1230 ms 13108 KB Output is correct
13 Correct 1731 ms 13264 KB Output is correct
14 Correct 1946 ms 14020 KB Output is correct
15 Correct 1798 ms 14272 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 40 ms 5144 KB Output is correct
2 Correct 57 ms 5140 KB Output is correct
3 Correct 89 ms 5256 KB Output is correct
4 Correct 135 ms 5212 KB Output is correct
5 Correct 877 ms 5276 KB Output is correct
6 Correct 769 ms 5612 KB Output is correct
7 Correct 1311 ms 10676 KB Output is correct
8 Correct 2009 ms 12400 KB Output is correct
9 Correct 63 ms 6344 KB Output is correct
10 Correct 1117 ms 6648 KB Output is correct
11 Correct 2865 ms 15660 KB Output is correct
12 Correct 3402 ms 15816 KB Output is correct
13 Correct 2861 ms 15432 KB Output is correct
14 Correct 3429 ms 15836 KB Output is correct
15 Correct 2810 ms 15356 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 25 ms 716 KB Output is correct
2 Correct 4 ms 460 KB Output is correct
3 Correct 7 ms 584 KB Output is correct
4 Correct 8 ms 460 KB Output is correct
5 Correct 28 ms 816 KB Output is correct
6 Correct 47 ms 832 KB Output is correct
7 Correct 4 ms 588 KB Output is correct
8 Correct 5 ms 588 KB Output is correct
9 Correct 33 ms 920 KB Output is correct
10 Correct 63 ms 944 KB Output is correct
11 Correct 77 ms 1020 KB Output is correct
12 Correct 72 ms 956 KB Output is correct
13 Correct 40 ms 5116 KB Output is correct
14 Correct 54 ms 5136 KB Output is correct
15 Correct 673 ms 11076 KB Output is correct
16 Correct 128 ms 5272 KB Output is correct
17 Correct 1016 ms 11428 KB Output is correct
18 Correct 735 ms 5332 KB Output is correct
19 Correct 1247 ms 11768 KB Output is correct
20 Correct 1185 ms 12292 KB Output is correct
21 Correct 44 ms 6416 KB Output is correct
22 Correct 71 ms 6380 KB Output is correct
23 Correct 875 ms 6424 KB Output is correct
24 Correct 1230 ms 13108 KB Output is correct
25 Correct 1731 ms 13264 KB Output is correct
26 Correct 1946 ms 14020 KB Output is correct
27 Correct 1798 ms 14272 KB Output is correct
28 Correct 40 ms 5144 KB Output is correct
29 Correct 57 ms 5140 KB Output is correct
30 Correct 89 ms 5256 KB Output is correct
31 Correct 135 ms 5212 KB Output is correct
32 Correct 877 ms 5276 KB Output is correct
33 Correct 769 ms 5612 KB Output is correct
34 Correct 1311 ms 10676 KB Output is correct
35 Correct 2009 ms 12400 KB Output is correct
36 Correct 63 ms 6344 KB Output is correct
37 Correct 1117 ms 6648 KB Output is correct
38 Correct 2865 ms 15660 KB Output is correct
39 Correct 3402 ms 15816 KB Output is correct
40 Correct 2861 ms 15432 KB Output is correct
41 Correct 3429 ms 15836 KB Output is correct
42 Correct 2810 ms 15356 KB Output is correct
43 Correct 1099 ms 11716 KB Output is correct
44 Correct 1613 ms 11864 KB Output is correct
45 Correct 1367 ms 12200 KB Output is correct
46 Correct 2024 ms 12492 KB Output is correct
47 Correct 65 ms 6388 KB Output is correct
48 Correct 86 ms 6348 KB Output is correct
49 Correct 1020 ms 6268 KB Output is correct
50 Correct 1361 ms 7420 KB Output is correct
51 Correct 1399 ms 13108 KB Output is correct
52 Correct 2139 ms 13776 KB Output is correct
53 Correct 2079 ms 13836 KB Output is correct
54 Correct 2507 ms 14440 KB Output is correct
55 Correct 2347 ms 14180 KB Output is correct
56 Correct 2557 ms 14840 KB Output is correct
57 Correct 2669 ms 15036 KB Output is correct
58 Correct 3302 ms 15488 KB Output is correct
59 Correct 2814 ms 15404 KB Output is correct
60 Correct 3572 ms 15836 KB Output is correct