Submission #402986

# Submission time Handle Problem Language Result Execution time Memory
402986 2021-05-12T15:57:33 Z mjhmjh1104 Abduction 2 (JOI17_abduction2) C++14
44 / 100
5000 ms 8828 KB
#include <map>
#include <cstdio>
#include <vector>
#include <algorithm>
using namespace std;

struct Tuple3 {
    int a;
    int b;
    int c;
};

int tree_a[131072], tree_b[131072];
vector<Tuple3> tv;

void interval_front(int i, int b, int e, int l, int r) {
    if (r < b || e < l) return;
    if (l <= b && e <= r) {
        tv.push_back({ i, b, e });
        return;
    }
    int m = (b + e) / 2;
    interval_front(i * 2 + 1, b, m, l, r);
    interval_front(i * 2 + 2, m + 1, e, l, r);
}

void interval_back(int i, int b, int e, int l, int r) {
    if (r < b || e < l) return;
    if (l <= b && e <= r) {
        tv.push_back({ i, b, e });
        return;
    }
    int m = (b + e) / 2;
    interval_back(i * 2 + 2, m + 1, e, l, r);
    interval_back(i * 2 + 1, b, m, l, r);
}

int lower_bound_left_real_a(int i, int b, int e, int v) {
    if (b == e) return b;
    int m = (b + e) / 2;
    if (tree_a[i * 2 + 2] > v) return lower_bound_left_real_a(i * 2 + 2, m + 1, e, v);
    return lower_bound_left_real_a(i * 2 + 1, b, m, v);
}

int lower_bound_left_real_b(int i, int b, int e, int v) {
    if (b == e) return b;
    int m = (b + e) / 2;
    if (tree_b[i * 2 + 2] > v) return lower_bound_left_real_b(i * 2 + 2, m + 1, e, v);
    return lower_bound_left_real_b(i * 2 + 1, b, m, v);
}

int lower_bound_right_real_a(int i, int b, int e, int v) {
    if (b == e) return b;
    int m = (b + e) / 2;
    if (tree_a[i * 2 + 1] > v) return lower_bound_right_real_a(i * 2 + 1, b, m, v);
    return lower_bound_right_real_a(i * 2 + 2, m + 1, e, v);
}

int lower_bound_right_real_b(int i, int b, int e, int v) {
    if (b == e) return b;
    int m = (b + e) / 2;
    if (tree_b[i * 2 + 1] > v) return lower_bound_right_real_b(i * 2 + 1, b, m, v);
    return lower_bound_right_real_b(i * 2 + 2, m + 1, e, v);
}

int lower_bound_left_a(int x, int v) {
    tv.clear();
    interval_back(0, 0, 65535, 0, x);
    for (auto &i: tv) if (tree_a[i.a] > v) return lower_bound_left_real_a(i.a, i.b, i.c, v);
    return -1;
}

int lower_bound_left_b(int x, int v) {
    tv.clear();
    interval_back(0, 0, 65535, 0, x);
    for (auto &i: tv) if (tree_b[i.a] > v) return lower_bound_left_real_b(i.a, i.b, i.c, v);
    return -1;
}

int lower_bound_right_a(int x, int v) {
    tv.clear();
    interval_front(0, 0, 65535, x, 65535);
    for (auto &i: tv) if (tree_a[i.a] > v) return lower_bound_right_real_a(i.a, i.b, i.c, v);
    return 65536;
}

int lower_bound_right_b(int x, int v) {
    tv.clear();
    interval_front(0, 0, 65535, x, 65535);
    for (auto &i: tv) if (tree_b[i.a] > v) return lower_bound_right_real_b(i.a, i.b, i.c, v);
    return 65536;
}

int h, w, q;
int a[50006], b[50006];
pair<int, bool> lt[100006];
vector<pair<int, long long>> v[100006];
vector<int> compress;

int main() {
    scanf("%d%d%d", &w, &h, &q);
    for (int i = 0; i < w; i++) scanf("%d", a + i);
    for (int i = 0; i < h; i++) scanf("%d", b + i);
    for (int i = 0; i < w; i++) compress.push_back(a[i]);
    for (int i = 0; i < h; i++) compress.push_back(b[i]);
    sort(compress.begin(), compress.end());
    for (int i = 0; i < w; i++) a[i] = lower_bound(compress.begin(), compress.end(), a[i]) - compress.begin();
    for (int i = 0; i < h; i++) b[i] = lower_bound(compress.begin(), compress.end(), b[i]) - compress.begin();
    for (int i = 0; i < w; i++) lt[a[i]] = { i, false };
    for (int i = 0; i < h; i++) lt[b[i]] = { i, true };
    for (int i = 0; i < w; i++) tree_a[65535 + i] = a[i];
    for (int i = 0; i < h; i++) tree_b[65535 + i] = b[i];
    for (int i = 65534; i >= 0; i--) {
        tree_a[i] = max(tree_a[i * 2 + 1], tree_a[i * 2 + 2]);
        tree_b[i] = max(tree_b[i * 2 + 1], tree_b[i * 2 + 2]);
    }
    for (int i = 0; i < q; i++) {
        int s, t;
        scanf("%d%d", &t, &s);
        s--, t--;
        long long res = 0;
        if (s > 0) { // up
            for (int j = 0; j < h + w; j++) v[j].clear();
            int it = lower_bound_left_b(s - 1, a[t]);
            if (it < 0) res = max(res, (long long)s);
            else {
                v[b[it]].push_back({ t, s - it });
                for (int i = 0; i < h + w; i++) if (!v[i].empty()) {
                    if (!lt[i].second) {
                        int above = lower_bound_left_b(v[i].front().first, a[lt[i].first]), bottom = lower_bound_right_b(v[i].front().first, a[lt[i].first]);
                        if (above < 0) for (auto &j: v[i]) res = max(res, j.second + j.first);
                        else {
                            if (!v[b[above]].empty() && lower_bound_left_a(v[b[above]].front().first, b[above]) != lower_bound_left_a(lt[i].first, b[above])) v[b[above]].clear();
                            long long ret = 0;
                            for (auto &j: v[i]) ret = max(ret, j.second + (j.first - above));
                            v[b[above]].push_back({ lt[i].first, ret });
                        }
                        if (bottom >= 65536) for (auto &j: v[i]) res = max(res, j.second + (h - 1 - j.first));
                        else {
                            if (!v[b[bottom]].empty() && lower_bound_left_a(v[b[bottom]].front().first, b[bottom]) != lower_bound_left_a(lt[i].first, b[bottom])) v[b[bottom]].clear();
                            long long ret = 0;
                            for (auto &j: v[i]) ret = max(ret, j.second + (bottom - j.first));
                            v[b[bottom]].push_back({ lt[i].first, ret });
                        }
                    } else {
                        int left = lower_bound_left_a(v[i].front().first, b[lt[i].first]), right = lower_bound_right_a(v[i].front().first, b[lt[i].first]);
                        if (left < 0) for (auto &j: v[i]) res = max(res, j.second + j.first);
                        else {
                            if (!v[a[left]].empty() && lower_bound_left_b(v[a[left]].front().first, a[left]) != lower_bound_left_b(lt[i].first, a[left])) v[a[left]].clear();
                            long long ret = 0;
                            for (auto &j: v[i]) ret = max(ret, j.second + (j.first - left));
                            v[a[left]].push_back({ lt[i].first, ret });
                        }
                        if (right >= 65536) for (auto &j: v[i]) res = max(res, j.second + (w - 1 - j.first));
                        else {
                            if (!v[a[right]].empty() && lower_bound_left_b(v[a[right]].front().first, a[right]) != lower_bound_left_b(lt[i].first, a[right])) v[a[right]].clear();
                            long long ret = 0;
                            for (auto &j: v[i]) ret = max(ret, j.second + (right - j.first));
                            v[a[right]].push_back({ lt[i].first, ret });
                        }
                    }
                }
            }
        }
        if (s < h - 1) { // down
            for (int j = 0; j < h + w; j++) v[j].clear();
            int it = lower_bound_right_b(s + 1, a[t]);
            if (it >= 65536) res = max(res, (long long)(h - 1 - s));
            else {
                v[b[it]].push_back({ t, it - s });
                for (int i = 0; i < h + w; i++) if (!v[i].empty()) {
                    if (!lt[i].second) {
                        int above = lower_bound_left_b(v[i].front().first, a[lt[i].first]), bottom = lower_bound_right_b(v[i].front().first, a[lt[i].first]);
                        if (above < 0) for (auto &j: v[i]) res = max(res, j.second + j.first);
                        else {
                            if (!v[b[above]].empty() && lower_bound_left_a(v[b[above]].front().first, b[above]) != lower_bound_left_a(lt[i].first, b[above])) v[b[above]].clear();
                            long long ret = 0;
                            for (auto &j: v[i]) ret = max(ret, j.second + (j.first - above));
                            v[b[above]].push_back({ lt[i].first, ret });
                        }
                        if (bottom >= 65536) for (auto &j: v[i]) res = max(res, j.second + (h - 1 - j.first));
                        else {
                            if (!v[b[bottom]].empty() && lower_bound_left_a(v[b[bottom]].front().first, b[bottom]) != lower_bound_left_a(lt[i].first, b[bottom])) v[b[bottom]].clear();
                            long long ret = 0;
                            for (auto &j: v[i]) ret = max(ret, j.second + (bottom - j.first));
                            v[b[bottom]].push_back({ lt[i].first, ret });
                        }
                    } else {
                        int left = lower_bound_left_a(v[i].front().first, b[lt[i].first]), right = lower_bound_right_a(v[i].front().first, b[lt[i].first]);
                        if (left < 0) for (auto &j: v[i]) res = max(res, j.second + j.first);
                        else {
                            if (!v[a[left]].empty() && lower_bound_left_b(v[a[left]].front().first, a[left]) != lower_bound_left_b(lt[i].first, a[left])) v[a[left]].clear();
                            long long ret = 0;
                            for (auto &j: v[i]) ret = max(ret, j.second + (j.first - left));
                            v[a[left]].push_back({ lt[i].first, ret });
                        }
                        if (right >= 65536) for (auto &j: v[i]) res = max(res, j.second + (w - 1 - j.first));
                        else {
                            if (!v[a[right]].empty() && lower_bound_left_b(v[a[right]].front().first, a[right]) != lower_bound_left_b(lt[i].first, a[right])) v[a[right]].clear();
                            long long ret = 0;
                            for (auto &j: v[i]) ret = max(ret, j.second + (right - j.first));
                            v[a[right]].push_back({ lt[i].first, ret });
                        }
                    }
                }
            }
        }
        if (t > 0) { // left
            for (int j = 0; j < h + w; j++) v[j].clear();
            int it = lower_bound_left_a(t - 1, b[s]);
            if (it < 0) res = max(res, (long long)t);
            else {
                v[a[it]].push_back({ s, t - it });
                for (int i = 0; i < h + w; i++) if (!v[i].empty()) {
                    if (!lt[i].second) {
                        int above = lower_bound_left_b(v[i].front().first, a[lt[i].first]), bottom = lower_bound_right_b(v[i].front().first, a[lt[i].first]);
                        if (above < 0) for (auto &j: v[i]) res = max(res, j.second + j.first);
                        else {
                            if (!v[b[above]].empty() && lower_bound_left_a(v[b[above]].front().first, b[above]) != lower_bound_left_a(lt[i].first, b[above])) v[b[above]].clear();
                            long long ret = 0;
                            for (auto &j: v[i]) ret = max(ret, j.second + (j.first - above));
                            v[b[above]].push_back({ lt[i].first, ret });
                        }
                        if (bottom >= 65536) for (auto &j: v[i]) res = max(res, j.second + (h - 1 - j.first));
                        else {
                            if (!v[b[bottom]].empty() && lower_bound_left_a(v[b[bottom]].front().first, b[bottom]) != lower_bound_left_a(lt[i].first, b[bottom])) v[b[bottom]].clear();
                            long long ret = 0;
                            for (auto &j: v[i]) ret = max(ret, j.second + (bottom - j.first));
                            v[b[bottom]].push_back({ lt[i].first, ret });
                        }
                    } else {
                        int left = lower_bound_left_a(v[i].front().first, b[lt[i].first]), right = lower_bound_right_a(v[i].front().first, b[lt[i].first]);
                        if (left < 0) for (auto &j: v[i]) res = max(res, j.second + j.first);
                        else {
                            if (!v[a[left]].empty() && lower_bound_left_b(v[a[left]].front().first, a[left]) != lower_bound_left_b(lt[i].first, a[left])) v[a[left]].clear();
                            long long ret = 0;
                            for (auto &j: v[i]) ret = max(ret, j.second + (j.first - left));
                            v[a[left]].push_back({ lt[i].first, ret });
                        }
                        if (right >= 65536) for (auto &j: v[i]) res = max(res, j.second + (w - 1 - j.first));
                        else {
                            if (!v[a[right]].empty() && lower_bound_left_b(v[a[right]].front().first, a[right]) != lower_bound_left_b(lt[i].first, a[right])) v[a[right]].clear();
                            long long ret = 0;
                            for (auto &j: v[i]) ret = max(ret, j.second + (right - j.first));
                            v[a[right]].push_back({ lt[i].first, ret });
                        }
                    }
                }
            }
        }
        if (t < w - 1) { // right
            for (int j = 0; j < h + w; j++) v[j].clear();
            int it = lower_bound_right_a(t + 1, b[s]);
            if (it >= 65536) res = max(res, (long long)(w - 1 - t));
            else {
                v[a[it]].push_back({ s, it - t });
                for (int i = 0; i < h + w; i++) if (!v[i].empty()) {
                    if (!lt[i].second) {
                        int above = lower_bound_left_b(v[i].front().first, a[lt[i].first]), bottom = lower_bound_right_b(v[i].front().first, a[lt[i].first]);
                        if (above < 0) for (auto &j: v[i]) res = max(res, j.second + j.first);
                        else {
                            if (!v[b[above]].empty() && lower_bound_left_a(v[b[above]].front().first, b[above]) != lower_bound_left_a(lt[i].first, b[above])) v[b[above]].clear();
                            long long ret = 0;
                            for (auto &j: v[i]) ret = max(ret, j.second + (j.first - above));
                            v[b[above]].push_back({ lt[i].first, ret });
                        }
                        if (bottom >= 65536) for (auto &j: v[i]) res = max(res, j.second + (h - 1 - j.first));
                        else {
                            if (!v[b[bottom]].empty() && lower_bound_left_a(v[b[bottom]].front().first, b[bottom]) != lower_bound_left_a(lt[i].first, b[bottom])) v[b[bottom]].clear();
                            long long ret = 0;
                            for (auto &j: v[i]) ret = max(ret, j.second + (bottom - j.first));
                            v[b[bottom]].push_back({ lt[i].first, ret });
                        }
                    } else {
                        int left = lower_bound_left_a(v[i].front().first, b[lt[i].first]), right = lower_bound_right_a(v[i].front().first, b[lt[i].first]);
                        if (left < 0) for (auto &j: v[i]) res = max(res, j.second + j.first);
                        else {
                            if (!v[a[left]].empty() && lower_bound_left_b(v[a[left]].front().first, a[left]) != lower_bound_left_b(lt[i].first, a[left])) v[a[left]].clear();
                            long long ret = 0;
                            for (auto &j: v[i]) ret = max(ret, j.second + (j.first - left));
                            v[a[left]].push_back({ lt[i].first, ret });
                        }
                        if (right >= 65536) for (auto &j: v[i]) res = max(res, j.second + (w - 1 - j.first));
                        else {
                            if (!v[a[right]].empty() && lower_bound_left_b(v[a[right]].front().first, a[right]) != lower_bound_left_b(lt[i].first, a[right])) v[a[right]].clear();
                            long long ret = 0;
                            for (auto &j: v[i]) ret = max(ret, j.second + (right - j.first));
                            v[a[right]].push_back({ lt[i].first, ret });
                        }
                    }
                }
            }
        }
        printf("%lld\n", res);
    }
}

Compilation message

abduction2.cpp: In function 'int main()':
abduction2.cpp:101:10: warning: ignoring return value of 'int scanf(const char*, ...)' declared with attribute 'warn_unused_result' [-Wunused-result]
  101 |     scanf("%d%d%d", &w, &h, &q);
      |     ~~~~~^~~~~~~~~~~~~~~~~~~~~~
abduction2.cpp:102:38: warning: ignoring return value of 'int scanf(const char*, ...)' declared with attribute 'warn_unused_result' [-Wunused-result]
  102 |     for (int i = 0; i < w; i++) scanf("%d", a + i);
      |                                 ~~~~~^~~~~~~~~~~~~
abduction2.cpp:103:38: warning: ignoring return value of 'int scanf(const char*, ...)' declared with attribute 'warn_unused_result' [-Wunused-result]
  103 |     for (int i = 0; i < h; i++) scanf("%d", b + i);
      |                                 ~~~~~^~~~~~~~~~~~~
abduction2.cpp:119:14: warning: ignoring return value of 'int scanf(const char*, ...)' declared with attribute 'warn_unused_result' [-Wunused-result]
  119 |         scanf("%d%d", &t, &s);
      |         ~~~~~^~~~~~~~~~~~~~~~
# Verdict Execution time Memory Grader output
1 Correct 2 ms 3148 KB Output is correct
2 Correct 3 ms 3160 KB Output is correct
3 Correct 3 ms 3148 KB Output is correct
4 Correct 2 ms 3148 KB Output is correct
5 Correct 3 ms 3148 KB Output is correct
6 Correct 2 ms 3148 KB Output is correct
7 Correct 2 ms 3148 KB Output is correct
8 Correct 2 ms 3148 KB Output is correct
9 Correct 2 ms 3148 KB Output is correct
10 Correct 3 ms 3148 KB Output is correct
11 Correct 2 ms 3148 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 3148 KB Output is correct
2 Correct 3 ms 3160 KB Output is correct
3 Correct 3 ms 3148 KB Output is correct
4 Correct 2 ms 3148 KB Output is correct
5 Correct 3 ms 3148 KB Output is correct
6 Correct 2 ms 3148 KB Output is correct
7 Correct 2 ms 3148 KB Output is correct
8 Correct 2 ms 3148 KB Output is correct
9 Correct 2 ms 3148 KB Output is correct
10 Correct 3 ms 3148 KB Output is correct
11 Correct 2 ms 3148 KB Output is correct
12 Correct 4 ms 3196 KB Output is correct
13 Correct 4 ms 3276 KB Output is correct
14 Correct 4 ms 3276 KB Output is correct
15 Correct 4 ms 3276 KB Output is correct
16 Correct 4 ms 3276 KB Output is correct
17 Correct 4 ms 3276 KB Output is correct
18 Correct 5 ms 3272 KB Output is correct
19 Correct 9 ms 3276 KB Output is correct
20 Correct 10 ms 3304 KB Output is correct
21 Correct 9 ms 3276 KB Output is correct
22 Correct 13 ms 3388 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 3148 KB Output is correct
2 Correct 3 ms 3160 KB Output is correct
3 Correct 3 ms 3148 KB Output is correct
4 Correct 2 ms 3148 KB Output is correct
5 Correct 3 ms 3148 KB Output is correct
6 Correct 2 ms 3148 KB Output is correct
7 Correct 2 ms 3148 KB Output is correct
8 Correct 2 ms 3148 KB Output is correct
9 Correct 2 ms 3148 KB Output is correct
10 Correct 3 ms 3148 KB Output is correct
11 Correct 2 ms 3148 KB Output is correct
12 Correct 4 ms 3196 KB Output is correct
13 Correct 4 ms 3276 KB Output is correct
14 Correct 4 ms 3276 KB Output is correct
15 Correct 4 ms 3276 KB Output is correct
16 Correct 4 ms 3276 KB Output is correct
17 Correct 4 ms 3276 KB Output is correct
18 Correct 5 ms 3272 KB Output is correct
19 Correct 9 ms 3276 KB Output is correct
20 Correct 10 ms 3304 KB Output is correct
21 Correct 9 ms 3276 KB Output is correct
22 Correct 13 ms 3388 KB Output is correct
23 Correct 42 ms 5328 KB Output is correct
24 Correct 43 ms 5340 KB Output is correct
25 Correct 51 ms 5308 KB Output is correct
26 Correct 41 ms 5300 KB Output is correct
27 Correct 40 ms 5296 KB Output is correct
28 Correct 89 ms 6212 KB Output is correct
29 Correct 41 ms 5352 KB Output is correct
30 Correct 180 ms 7028 KB Output is correct
31 Correct 249 ms 7720 KB Output is correct
32 Correct 39 ms 5328 KB Output is correct
33 Correct 72 ms 5648 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 13 ms 3312 KB Output is correct
2 Correct 13 ms 3296 KB Output is correct
3 Correct 14 ms 3296 KB Output is correct
4 Correct 13 ms 3296 KB Output is correct
5 Correct 13 ms 3276 KB Output is correct
6 Correct 114 ms 3336 KB Output is correct
7 Correct 98 ms 3308 KB Output is correct
8 Correct 317 ms 3412 KB Output is correct
9 Correct 351 ms 3388 KB Output is correct
10 Correct 395 ms 3396 KB Output is correct
11 Correct 491 ms 3524 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 3148 KB Output is correct
2 Correct 3 ms 3160 KB Output is correct
3 Correct 3 ms 3148 KB Output is correct
4 Correct 2 ms 3148 KB Output is correct
5 Correct 3 ms 3148 KB Output is correct
6 Correct 2 ms 3148 KB Output is correct
7 Correct 2 ms 3148 KB Output is correct
8 Correct 2 ms 3148 KB Output is correct
9 Correct 2 ms 3148 KB Output is correct
10 Correct 3 ms 3148 KB Output is correct
11 Correct 2 ms 3148 KB Output is correct
12 Correct 4 ms 3196 KB Output is correct
13 Correct 4 ms 3276 KB Output is correct
14 Correct 4 ms 3276 KB Output is correct
15 Correct 4 ms 3276 KB Output is correct
16 Correct 4 ms 3276 KB Output is correct
17 Correct 4 ms 3276 KB Output is correct
18 Correct 5 ms 3272 KB Output is correct
19 Correct 9 ms 3276 KB Output is correct
20 Correct 10 ms 3304 KB Output is correct
21 Correct 9 ms 3276 KB Output is correct
22 Correct 13 ms 3388 KB Output is correct
23 Correct 42 ms 5328 KB Output is correct
24 Correct 43 ms 5340 KB Output is correct
25 Correct 51 ms 5308 KB Output is correct
26 Correct 41 ms 5300 KB Output is correct
27 Correct 40 ms 5296 KB Output is correct
28 Correct 89 ms 6212 KB Output is correct
29 Correct 41 ms 5352 KB Output is correct
30 Correct 180 ms 7028 KB Output is correct
31 Correct 249 ms 7720 KB Output is correct
32 Correct 39 ms 5328 KB Output is correct
33 Correct 72 ms 5648 KB Output is correct
34 Correct 13 ms 3312 KB Output is correct
35 Correct 13 ms 3296 KB Output is correct
36 Correct 14 ms 3296 KB Output is correct
37 Correct 13 ms 3296 KB Output is correct
38 Correct 13 ms 3276 KB Output is correct
39 Correct 114 ms 3336 KB Output is correct
40 Correct 98 ms 3308 KB Output is correct
41 Correct 317 ms 3412 KB Output is correct
42 Correct 351 ms 3388 KB Output is correct
43 Correct 395 ms 3396 KB Output is correct
44 Correct 491 ms 3524 KB Output is correct
45 Correct 154 ms 5336 KB Output is correct
46 Correct 168 ms 5260 KB Output is correct
47 Correct 156 ms 5308 KB Output is correct
48 Correct 158 ms 5340 KB Output is correct
49 Correct 158 ms 5308 KB Output is correct
50 Correct 2210 ms 6616 KB Output is correct
51 Correct 2084 ms 6700 KB Output is correct
52 Execution timed out 5034 ms 8828 KB Time limit exceeded
53 Halted 0 ms 0 KB -