Submission #402982

# Submission time Handle Problem Language Result Execution time Memory
402982 2021-05-12T15:53:45 Z mjhmjh1104 Abduction 2 (JOI17_abduction2) C++14
44 / 100
5000 ms 8688 KB
#include <map>
#include <tuple>
#include <cstdio>
#include <vector>
#include <algorithm>
using namespace std;

int tree_a[131072], tree_b[131072];
vector<tuple<int, int, int>> tv;

void interval(int i, int b, int e, int l, int r) {
    if (r < b || e < l) return;
    if (l <= b && e <= r) {
        tv.push_back({ i, b, e });
        return;
    }
    int m = (b + e) / 2;
    interval(i * 2 + 1, b, m, l, r);
    interval(i * 2 + 2, m + 1, e, l, r);
}

int lower_bound_left_real_a(int i, int b, int e, int v) {
    if (b == e) return b;
    int m = (b + e) / 2;
    if (tree_a[i * 2 + 2] > v) return lower_bound_left_real_a(i * 2 + 2, m + 1, e, v);
    return lower_bound_left_real_a(i * 2 + 1, b, m, v);
}

int lower_bound_left_real_b(int i, int b, int e, int v) {
    if (b == e) return b;
    int m = (b + e) / 2;
    if (tree_b[i * 2 + 2] > v) return lower_bound_left_real_b(i * 2 + 2, m + 1, e, v);
    return lower_bound_left_real_b(i * 2 + 1, b, m, v);
}

int lower_bound_right_real_a(int i, int b, int e, int v) {
    if (b == e) return b;
    int m = (b + e) / 2;
    if (tree_a[i * 2 + 1] > v) return lower_bound_right_real_a(i * 2 + 1, b, m, v);
    return lower_bound_right_real_a(i * 2 + 2, m + 1, e, v);
}

int lower_bound_right_real_b(int i, int b, int e, int v) {
    if (b == e) return b;
    int m = (b + e) / 2;
    if (tree_b[i * 2 + 1] > v) return lower_bound_right_real_b(i * 2 + 1, b, m, v);
    return lower_bound_right_real_b(i * 2 + 2, m + 1, e, v);
}

int lower_bound_left_a(int x, int v) {
    tv.clear();
    interval(0, 0, 65535, 0, x);
    reverse(tv.begin(), tv.end());
    for (auto &i: tv) {
        auto [ a, b, c ] = i;
        if (tree_a[a] > v) return lower_bound_left_real_a(a, b, c, v);
    }
    return -1;
}

int lower_bound_left_b(int x, int v) {
    tv.clear();
    interval(0, 0, 65535, 0, x);
    reverse(tv.begin(), tv.end());
    for (auto &i: tv) {
        auto [ a, b, c ] = i;
        if (tree_b[a] > v) return lower_bound_left_real_b(a, b, c, v);
    }
    return -1;
}

int lower_bound_right_a(int x, int v) {
    tv.clear();
    interval(0, 0, 65535, x, 65535);
    for (auto &i: tv) {
        auto [ a, b, c ] = i;
        if (tree_a[a] > v) return lower_bound_right_real_a(a, b, c, v);
    }
    return 65536;
}

int lower_bound_right_b(int x, int v) {
    tv.clear();
    interval(0, 0, 65535, x, 65535);
    for (auto &i: tv) {
        auto [ a, b, c ] = i;
        if (tree_b[a] > v) return lower_bound_right_real_b(a, b, c, v);
    }
    return 65536;
}

int h, w, q;
int a[50006], b[50006];
pair<int, bool> lt[100006];
vector<pair<int, long long>> v[100006];
vector<int> compress;

int main() {
    scanf("%d%d%d", &w, &h, &q);
    for (int i = 0; i < w; i++) scanf("%d", a + i);
    for (int i = 0; i < h; i++) scanf("%d", b + i);
    for (int i = 0; i < w; i++) compress.push_back(a[i]);
    for (int i = 0; i < h; i++) compress.push_back(b[i]);
    sort(compress.begin(), compress.end());
    for (int i = 0; i < w; i++) a[i] = lower_bound(compress.begin(), compress.end(), a[i]) - compress.begin();
    for (int i = 0; i < h; i++) b[i] = lower_bound(compress.begin(), compress.end(), b[i]) - compress.begin();
    for (int i = 0; i < w; i++) lt[a[i]] = { i, false };
    for (int i = 0; i < h; i++) lt[b[i]] = { i, true };
    for (int i = 0; i < w; i++) tree_a[65535 + i] = a[i];
    for (int i = 0; i < h; i++) tree_b[65535 + i] = b[i];
    for (int i = 65534; i >= 0; i--) {
        tree_a[i] = max(tree_a[i * 2 + 1], tree_a[i * 2 + 2]);
        tree_b[i] = max(tree_b[i * 2 + 1], tree_b[i * 2 + 2]);
    }
    for (int i = 0; i < q; i++) {
        int s, t;
        scanf("%d%d", &t, &s);
        s--, t--;
        long long res = 0;
        if (s > 0) { // up
            for (int j = 0; j < h + w; j++) v[j].clear();
            int it = lower_bound_left_b(s - 1, a[t]);
            if (it < 0) res = max(res, (long long)s);
            else {
                v[b[it]].push_back({ t, s - it });
                for (int i = 0; i < h + w; i++) if (!v[i].empty()) {
                    if (!lt[i].second) {
                        int above = lower_bound_left_b(v[i].front().first, a[lt[i].first]), bottom = lower_bound_right_b(v[i].front().first, a[lt[i].first]);
                        if (above < 0) for (auto &j: v[i]) res = max(res, j.second + j.first);
                        else {
                            if (!v[b[above]].empty() && lower_bound_left_a(v[b[above]].front().first, b[above]) != lower_bound_left_a(lt[i].first, b[above])) v[b[above]].clear();
                            long long ret = 0;
                            for (auto &j: v[i]) ret = max(ret, j.second + (j.first - above));
                            v[b[above]].push_back({ lt[i].first, ret });
                        }
                        if (bottom >= 65536) for (auto &j: v[i]) res = max(res, j.second + (h - 1 - j.first));
                        else {
                            if (!v[b[bottom]].empty() && lower_bound_left_a(v[b[bottom]].front().first, b[bottom]) != lower_bound_left_a(lt[i].first, b[bottom])) v[b[bottom]].clear();
                            long long ret = 0;
                            for (auto &j: v[i]) ret = max(ret, j.second + (bottom - j.first));
                            v[b[bottom]].push_back({ lt[i].first, ret });
                        }
                    } else {
                        int left = lower_bound_left_a(v[i].front().first, b[lt[i].first]), right = lower_bound_right_a(v[i].front().first, b[lt[i].first]);
                        if (left < 0) for (auto &j: v[i]) res = max(res, j.second + j.first);
                        else {
                            if (!v[a[left]].empty() && lower_bound_left_b(v[a[left]].front().first, a[left]) != lower_bound_left_b(lt[i].first, a[left])) v[a[left]].clear();
                            long long ret = 0;
                            for (auto &j: v[i]) ret = max(ret, j.second + (j.first - left));
                            v[a[left]].push_back({ lt[i].first, ret });
                        }
                        if (right >= 65536) for (auto &j: v[i]) res = max(res, j.second + (w - 1 - j.first));
                        else {
                            if (!v[a[right]].empty() && lower_bound_left_b(v[a[right]].front().first, a[right]) != lower_bound_left_b(lt[i].first, a[right])) v[a[right]].clear();
                            long long ret = 0;
                            for (auto &j: v[i]) ret = max(ret, j.second + (right - j.first));
                            v[a[right]].push_back({ lt[i].first, ret });
                        }
                    }
                }
            }
        }
        if (s < h - 1) { // down
            for (int j = 0; j < h + w; j++) v[j].clear();
            int it = lower_bound_right_b(s + 1, a[t]);
            if (it >= 65536) res = max(res, (long long)(h - 1 - s));
            else {
                v[b[it]].push_back({ t, it - s });
                for (int i = 0; i < h + w; i++) if (!v[i].empty()) {
                    if (!lt[i].second) {
                        int above = lower_bound_left_b(v[i].front().first, a[lt[i].first]), bottom = lower_bound_right_b(v[i].front().first, a[lt[i].first]);
                        if (above < 0) for (auto &j: v[i]) res = max(res, j.second + j.first);
                        else {
                            if (!v[b[above]].empty() && lower_bound_left_a(v[b[above]].front().first, b[above]) != lower_bound_left_a(lt[i].first, b[above])) v[b[above]].clear();
                            long long ret = 0;
                            for (auto &j: v[i]) ret = max(ret, j.second + (j.first - above));
                            v[b[above]].push_back({ lt[i].first, ret });
                        }
                        if (bottom >= 65536) for (auto &j: v[i]) res = max(res, j.second + (h - 1 - j.first));
                        else {
                            if (!v[b[bottom]].empty() && lower_bound_left_a(v[b[bottom]].front().first, b[bottom]) != lower_bound_left_a(lt[i].first, b[bottom])) v[b[bottom]].clear();
                            long long ret = 0;
                            for (auto &j: v[i]) ret = max(ret, j.second + (bottom - j.first));
                            v[b[bottom]].push_back({ lt[i].first, ret });
                        }
                    } else {
                        int left = lower_bound_left_a(v[i].front().first, b[lt[i].first]), right = lower_bound_right_a(v[i].front().first, b[lt[i].first]);
                        if (left < 0) for (auto &j: v[i]) res = max(res, j.second + j.first);
                        else {
                            if (!v[a[left]].empty() && lower_bound_left_b(v[a[left]].front().first, a[left]) != lower_bound_left_b(lt[i].first, a[left])) v[a[left]].clear();
                            long long ret = 0;
                            for (auto &j: v[i]) ret = max(ret, j.second + (j.first - left));
                            v[a[left]].push_back({ lt[i].first, ret });
                        }
                        if (right >= 65536) for (auto &j: v[i]) res = max(res, j.second + (w - 1 - j.first));
                        else {
                            if (!v[a[right]].empty() && lower_bound_left_b(v[a[right]].front().first, a[right]) != lower_bound_left_b(lt[i].first, a[right])) v[a[right]].clear();
                            long long ret = 0;
                            for (auto &j: v[i]) ret = max(ret, j.second + (right - j.first));
                            v[a[right]].push_back({ lt[i].first, ret });
                        }
                    }
                }
            }
        }
        if (t > 0) { // left
            for (int j = 0; j < h + w; j++) v[j].clear();
            int it = lower_bound_left_a(t - 1, b[s]);
            if (it < 0) res = max(res, (long long)t);
            else {
                v[a[it]].push_back({ s, t - it });
                for (int i = 0; i < h + w; i++) if (!v[i].empty()) {
                    if (!lt[i].second) {
                        int above = lower_bound_left_b(v[i].front().first, a[lt[i].first]), bottom = lower_bound_right_b(v[i].front().first, a[lt[i].first]);
                        if (above < 0) for (auto &j: v[i]) res = max(res, j.second + j.first);
                        else {
                            if (!v[b[above]].empty() && lower_bound_left_a(v[b[above]].front().first, b[above]) != lower_bound_left_a(lt[i].first, b[above])) v[b[above]].clear();
                            long long ret = 0;
                            for (auto &j: v[i]) ret = max(ret, j.second + (j.first - above));
                            v[b[above]].push_back({ lt[i].first, ret });
                        }
                        if (bottom >= 65536) for (auto &j: v[i]) res = max(res, j.second + (h - 1 - j.first));
                        else {
                            if (!v[b[bottom]].empty() && lower_bound_left_a(v[b[bottom]].front().first, b[bottom]) != lower_bound_left_a(lt[i].first, b[bottom])) v[b[bottom]].clear();
                            long long ret = 0;
                            for (auto &j: v[i]) ret = max(ret, j.second + (bottom - j.first));
                            v[b[bottom]].push_back({ lt[i].first, ret });
                        }
                    } else {
                        int left = lower_bound_left_a(v[i].front().first, b[lt[i].first]), right = lower_bound_right_a(v[i].front().first, b[lt[i].first]);
                        if (left < 0) for (auto &j: v[i]) res = max(res, j.second + j.first);
                        else {
                            if (!v[a[left]].empty() && lower_bound_left_b(v[a[left]].front().first, a[left]) != lower_bound_left_b(lt[i].first, a[left])) v[a[left]].clear();
                            long long ret = 0;
                            for (auto &j: v[i]) ret = max(ret, j.second + (j.first - left));
                            v[a[left]].push_back({ lt[i].first, ret });
                        }
                        if (right >= 65536) for (auto &j: v[i]) res = max(res, j.second + (w - 1 - j.first));
                        else {
                            if (!v[a[right]].empty() && lower_bound_left_b(v[a[right]].front().first, a[right]) != lower_bound_left_b(lt[i].first, a[right])) v[a[right]].clear();
                            long long ret = 0;
                            for (auto &j: v[i]) ret = max(ret, j.second + (right - j.first));
                            v[a[right]].push_back({ lt[i].first, ret });
                        }
                    }
                }
            }
        }
        if (t < w - 1) { // right
            for (int j = 0; j < h + w; j++) v[j].clear();
            int it = lower_bound_right_a(t + 1, b[s]);
            if (it >= 65536) res = max(res, (long long)(w - 1 - t));
            else {
                v[a[it]].push_back({ s, it - t });
                for (int i = 0; i < h + w; i++) if (!v[i].empty()) {
                    if (!lt[i].second) {
                        int above = lower_bound_left_b(v[i].front().first, a[lt[i].first]), bottom = lower_bound_right_b(v[i].front().first, a[lt[i].first]);
                        if (above < 0) for (auto &j: v[i]) res = max(res, j.second + j.first);
                        else {
                            if (!v[b[above]].empty() && lower_bound_left_a(v[b[above]].front().first, b[above]) != lower_bound_left_a(lt[i].first, b[above])) v[b[above]].clear();
                            long long ret = 0;
                            for (auto &j: v[i]) ret = max(ret, j.second + (j.first - above));
                            v[b[above]].push_back({ lt[i].first, ret });
                        }
                        if (bottom >= 65536) for (auto &j: v[i]) res = max(res, j.second + (h - 1 - j.first));
                        else {
                            if (!v[b[bottom]].empty() && lower_bound_left_a(v[b[bottom]].front().first, b[bottom]) != lower_bound_left_a(lt[i].first, b[bottom])) v[b[bottom]].clear();
                            long long ret = 0;
                            for (auto &j: v[i]) ret = max(ret, j.second + (bottom - j.first));
                            v[b[bottom]].push_back({ lt[i].first, ret });
                        }
                    } else {
                        int left = lower_bound_left_a(v[i].front().first, b[lt[i].first]), right = lower_bound_right_a(v[i].front().first, b[lt[i].first]);
                        if (left < 0) for (auto &j: v[i]) res = max(res, j.second + j.first);
                        else {
                            if (!v[a[left]].empty() && lower_bound_left_b(v[a[left]].front().first, a[left]) != lower_bound_left_b(lt[i].first, a[left])) v[a[left]].clear();
                            long long ret = 0;
                            for (auto &j: v[i]) ret = max(ret, j.second + (j.first - left));
                            v[a[left]].push_back({ lt[i].first, ret });
                        }
                        if (right >= 65536) for (auto &j: v[i]) res = max(res, j.second + (w - 1 - j.first));
                        else {
                            if (!v[a[right]].empty() && lower_bound_left_b(v[a[right]].front().first, a[right]) != lower_bound_left_b(lt[i].first, a[right])) v[a[right]].clear();
                            long long ret = 0;
                            for (auto &j: v[i]) ret = max(ret, j.second + (right - j.first));
                            v[a[right]].push_back({ lt[i].first, ret });
                        }
                    }
                }
            }
        }
        printf("%lld\n", res);
    }
}

Compilation message

abduction2.cpp: In function 'int lower_bound_left_a(int, int)':
abduction2.cpp:55:14: warning: structured bindings only available with '-std=c++17' or '-std=gnu++17'
   55 |         auto [ a, b, c ] = i;
      |              ^
abduction2.cpp: In function 'int lower_bound_left_b(int, int)':
abduction2.cpp:66:14: warning: structured bindings only available with '-std=c++17' or '-std=gnu++17'
   66 |         auto [ a, b, c ] = i;
      |              ^
abduction2.cpp: In function 'int lower_bound_right_a(int, int)':
abduction2.cpp:76:14: warning: structured bindings only available with '-std=c++17' or '-std=gnu++17'
   76 |         auto [ a, b, c ] = i;
      |              ^
abduction2.cpp: In function 'int lower_bound_right_b(int, int)':
abduction2.cpp:86:14: warning: structured bindings only available with '-std=c++17' or '-std=gnu++17'
   86 |         auto [ a, b, c ] = i;
      |              ^
abduction2.cpp: In function 'int main()':
abduction2.cpp:99:10: warning: ignoring return value of 'int scanf(const char*, ...)' declared with attribute 'warn_unused_result' [-Wunused-result]
   99 |     scanf("%d%d%d", &w, &h, &q);
      |     ~~~~~^~~~~~~~~~~~~~~~~~~~~~
abduction2.cpp:100:38: warning: ignoring return value of 'int scanf(const char*, ...)' declared with attribute 'warn_unused_result' [-Wunused-result]
  100 |     for (int i = 0; i < w; i++) scanf("%d", a + i);
      |                                 ~~~~~^~~~~~~~~~~~~
abduction2.cpp:101:38: warning: ignoring return value of 'int scanf(const char*, ...)' declared with attribute 'warn_unused_result' [-Wunused-result]
  101 |     for (int i = 0; i < h; i++) scanf("%d", b + i);
      |                                 ~~~~~^~~~~~~~~~~~~
abduction2.cpp:117:14: warning: ignoring return value of 'int scanf(const char*, ...)' declared with attribute 'warn_unused_result' [-Wunused-result]
  117 |         scanf("%d%d", &t, &s);
      |         ~~~~~^~~~~~~~~~~~~~~~
# Verdict Execution time Memory Grader output
1 Correct 2 ms 3148 KB Output is correct
2 Correct 2 ms 3148 KB Output is correct
3 Correct 2 ms 3148 KB Output is correct
4 Correct 2 ms 3148 KB Output is correct
5 Correct 3 ms 3148 KB Output is correct
6 Correct 3 ms 3148 KB Output is correct
7 Correct 2 ms 3148 KB Output is correct
8 Correct 2 ms 3148 KB Output is correct
9 Correct 2 ms 3148 KB Output is correct
10 Correct 2 ms 3148 KB Output is correct
11 Correct 2 ms 3148 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 3148 KB Output is correct
2 Correct 2 ms 3148 KB Output is correct
3 Correct 2 ms 3148 KB Output is correct
4 Correct 2 ms 3148 KB Output is correct
5 Correct 3 ms 3148 KB Output is correct
6 Correct 3 ms 3148 KB Output is correct
7 Correct 2 ms 3148 KB Output is correct
8 Correct 2 ms 3148 KB Output is correct
9 Correct 2 ms 3148 KB Output is correct
10 Correct 2 ms 3148 KB Output is correct
11 Correct 2 ms 3148 KB Output is correct
12 Correct 4 ms 3148 KB Output is correct
13 Correct 4 ms 3148 KB Output is correct
14 Correct 4 ms 3148 KB Output is correct
15 Correct 4 ms 3148 KB Output is correct
16 Correct 4 ms 3148 KB Output is correct
17 Correct 3 ms 3148 KB Output is correct
18 Correct 4 ms 3148 KB Output is correct
19 Correct 8 ms 3304 KB Output is correct
20 Correct 10 ms 3336 KB Output is correct
21 Correct 9 ms 3276 KB Output is correct
22 Correct 13 ms 3372 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 3148 KB Output is correct
2 Correct 2 ms 3148 KB Output is correct
3 Correct 2 ms 3148 KB Output is correct
4 Correct 2 ms 3148 KB Output is correct
5 Correct 3 ms 3148 KB Output is correct
6 Correct 3 ms 3148 KB Output is correct
7 Correct 2 ms 3148 KB Output is correct
8 Correct 2 ms 3148 KB Output is correct
9 Correct 2 ms 3148 KB Output is correct
10 Correct 2 ms 3148 KB Output is correct
11 Correct 2 ms 3148 KB Output is correct
12 Correct 4 ms 3148 KB Output is correct
13 Correct 4 ms 3148 KB Output is correct
14 Correct 4 ms 3148 KB Output is correct
15 Correct 4 ms 3148 KB Output is correct
16 Correct 4 ms 3148 KB Output is correct
17 Correct 3 ms 3148 KB Output is correct
18 Correct 4 ms 3148 KB Output is correct
19 Correct 8 ms 3304 KB Output is correct
20 Correct 10 ms 3336 KB Output is correct
21 Correct 9 ms 3276 KB Output is correct
22 Correct 13 ms 3372 KB Output is correct
23 Correct 41 ms 5220 KB Output is correct
24 Correct 40 ms 5220 KB Output is correct
25 Correct 41 ms 5212 KB Output is correct
26 Correct 43 ms 5300 KB Output is correct
27 Correct 41 ms 5300 KB Output is correct
28 Correct 73 ms 6112 KB Output is correct
29 Correct 39 ms 5204 KB Output is correct
30 Correct 166 ms 6972 KB Output is correct
31 Correct 205 ms 7408 KB Output is correct
32 Correct 37 ms 5180 KB Output is correct
33 Correct 72 ms 5604 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 13 ms 3264 KB Output is correct
2 Correct 14 ms 3268 KB Output is correct
3 Correct 12 ms 3276 KB Output is correct
4 Correct 12 ms 3160 KB Output is correct
5 Correct 12 ms 3276 KB Output is correct
6 Correct 86 ms 3300 KB Output is correct
7 Correct 83 ms 3404 KB Output is correct
8 Correct 313 ms 3376 KB Output is correct
9 Correct 344 ms 3348 KB Output is correct
10 Correct 371 ms 3428 KB Output is correct
11 Correct 477 ms 3376 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 3148 KB Output is correct
2 Correct 2 ms 3148 KB Output is correct
3 Correct 2 ms 3148 KB Output is correct
4 Correct 2 ms 3148 KB Output is correct
5 Correct 3 ms 3148 KB Output is correct
6 Correct 3 ms 3148 KB Output is correct
7 Correct 2 ms 3148 KB Output is correct
8 Correct 2 ms 3148 KB Output is correct
9 Correct 2 ms 3148 KB Output is correct
10 Correct 2 ms 3148 KB Output is correct
11 Correct 2 ms 3148 KB Output is correct
12 Correct 4 ms 3148 KB Output is correct
13 Correct 4 ms 3148 KB Output is correct
14 Correct 4 ms 3148 KB Output is correct
15 Correct 4 ms 3148 KB Output is correct
16 Correct 4 ms 3148 KB Output is correct
17 Correct 3 ms 3148 KB Output is correct
18 Correct 4 ms 3148 KB Output is correct
19 Correct 8 ms 3304 KB Output is correct
20 Correct 10 ms 3336 KB Output is correct
21 Correct 9 ms 3276 KB Output is correct
22 Correct 13 ms 3372 KB Output is correct
23 Correct 41 ms 5220 KB Output is correct
24 Correct 40 ms 5220 KB Output is correct
25 Correct 41 ms 5212 KB Output is correct
26 Correct 43 ms 5300 KB Output is correct
27 Correct 41 ms 5300 KB Output is correct
28 Correct 73 ms 6112 KB Output is correct
29 Correct 39 ms 5204 KB Output is correct
30 Correct 166 ms 6972 KB Output is correct
31 Correct 205 ms 7408 KB Output is correct
32 Correct 37 ms 5180 KB Output is correct
33 Correct 72 ms 5604 KB Output is correct
34 Correct 13 ms 3264 KB Output is correct
35 Correct 14 ms 3268 KB Output is correct
36 Correct 12 ms 3276 KB Output is correct
37 Correct 12 ms 3160 KB Output is correct
38 Correct 12 ms 3276 KB Output is correct
39 Correct 86 ms 3300 KB Output is correct
40 Correct 83 ms 3404 KB Output is correct
41 Correct 313 ms 3376 KB Output is correct
42 Correct 344 ms 3348 KB Output is correct
43 Correct 371 ms 3428 KB Output is correct
44 Correct 477 ms 3376 KB Output is correct
45 Correct 154 ms 5180 KB Output is correct
46 Correct 156 ms 5128 KB Output is correct
47 Correct 153 ms 5180 KB Output is correct
48 Correct 157 ms 5216 KB Output is correct
49 Correct 152 ms 5176 KB Output is correct
50 Correct 2021 ms 6484 KB Output is correct
51 Correct 1812 ms 6568 KB Output is correct
52 Execution timed out 5067 ms 8688 KB Time limit exceeded
53 Halted 0 ms 0 KB -