#include "werewolf.h"
#include <bits/stdc++.h>
#pragma comment(linker, "/stack:200000000")
#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
#pragma GCC target ("avx2")
#pragma GCC optimize("Ofast")
#pragma GCC target ("fma")
#pragma GCC optimization ("O3")
#pragma GCC optimization ("unroll-loops")
#define pb push_back
#define f first
#define sc second
using namespace std;
typedef long long int ll;
typedef string str;
const int lim = 6e5;
struct fenwick_tree{
int n;
vector<int> sm;
fenwick_tree(int _n){
n = _n;
sm.assign(n, 0);
}
void upd(int in, int x){
in++;
while(in <= n) sm[in-1]+=x, in+=in&-in;
}
int sum(int in){
in++;
int s = 0;
while(in >= 1) s+=sm[in-1], in-=in&-in;
return s;
}
int sum(int l, int r){
l--;
int s = sum(r);
if(l >= 0) s-=sum(l);
return s;
}
};
struct reachability_tree{
int n;
vector<int> p;
vector<vector<int>> v;
vector<int> w;
reachability_tree(int _n, int _w){
n = _n;
p.resize(n);
v.resize(n);
w.resize(n, _w);
for(int i = 0; i < n; i++) p[i] = i;
}
inline int get(int x){
if(p[x] != x) p[x] = get(p[x]);
return p[x];
}
void unite(int a, int b, int _w){
a = get(a), b = get(b);
p[a] = n, p[b] = n;
p.pb(n);
v.pb({});
v[n].pb(a);
if(a != b) v[n].pb(b);
w.pb(_w);
n++;
}
};
int n, m, q;
reachability_tree rtl(0, 0), rtr(0, 0);
int szl[lim], szr[lim], posl[lim], posr[lim];
vector<int> al, ar;
int ancl[lim][20], ancr[lim][20];
void dfsl(int nd, int ss){
posl[nd] = al.size();
szl[nd] = 0;
if(rtl.v[nd].empty()){
al.pb(nd);
szl[nd] = 1;
ancl[nd][0] = ss;
return;
}
for(int x: rtl.v[nd]) if(x != ss) dfsl(x, nd);
for(int x: rtl.v[nd]) szl[nd]+=szl[x];
ancl[nd][0] = ss;
}
void dfsr(int nd, int ss){
posr[nd] = ar.size();
szr[nd] = 0;
if(rtr.v[nd].empty()){
ar.pb(nd);
szr[nd] = 1;
ancr[nd][0] = ss;
return;
}
for(int x: rtr.v[nd]) if(x != ss) dfsr(x, nd);
for(int x: rtr.v[nd]) szr[nd]+=szr[x];
ancr[nd][0] = ss;
}
inline int bsl(int nd, int vl){
if(ancl[nd][0] == -1 || rtl.w[ancl[nd][0]] > vl) return nd;
for(int i = 1; i < 20; i++) if(ancl[nd][i] == -1 || rtl.w[ancl[nd][i]] > vl) return bsl(ancl[nd][i-1], vl);
return bsl(ancl[nd][19], vl);
}
inline int bsr(int nd, int vl){
if(ancr[nd][0] == -1 || rtr.w[ancr[nd][0]] < vl) return nd;
for(int i = 1; i < 20; i++) if(ancr[nd][i] == -1 || rtr.w[ancr[nd][i]] < vl) return bsr(ancr[nd][i-1], vl);
return bsr(ancr[nd][19], vl);
}
vector<int> check_validity(int n, vector<int> U, vector<int> V, vector<int> ss, vector<int> ee, vector<int> L, vector<int> R){
::n = n, m = U.size(), q = ss.size();
pair<int, int> edgel[m], edger[m];
for(int i = 0; i < m; i++) edgel[i] = {U[i], V[i]}, edger[i] = {U[i], V[i]};
sort(edgel, edgel+m, [&](pair<int, int> a, pair<int, int> b){
return max(a.f, a.sc) < max(b.f, b.sc);
});
sort(edger, edger+m, [&](pair<int, int> a, pair<int, int> b){
return min(a.f, a.sc) > min(b.f, b.sc);
});
rtl = reachability_tree(n, 0), rtr = reachability_tree(n, n+1);
for(int i = 0; i < m; i++) rtl.unite(edgel[i].f, edgel[i].sc, max(edgel[i].f, edgel[i].sc)), rtr.unite(edger[i].f, edger[i].sc, min(edger[i].f, edger[i].sc));
for(int i = 0; i < rtl.n; i++) for(int j = 0; j < 20; j++) ancl[i][j] = -1;
for(int i = 0; i < rtr.n; i++) for(int j = 0; j < 20; j++) ancr[i][j] = -1;
dfsl(rtl.n-1, -1);
dfsr(rtr.n-1, -1);
for(int i = 1; i < 20; i++) for(int j = 0; j < rtl.n; j++){
if(ancl[j][i-1] == -1) continue;
ancl[j][i] = ancl[ancl[j][i-1]][i-1];
}
for(int i = 1; i < 20; i++) for(int j = 0; j < rtr.n; j++){
if(ancr[j][i-1] == -1) continue;
ancr[j][i] = ancr[ancr[j][i-1]][i-1];
}
vector<int> ans(q, 0);
pair<int, int> points[n];
for(int i = 0; i < n; i++) points[i] = {posl[i], posr[i]};
sort(points, points+n);
vector<tuple<int, int, int>> query1[n], query2[n];
for(int qq = 0; qq < q; qq++){
int ndl = bsl(ee[qq], R[qq]), ndr = bsr(ss[qq], L[qq]);
int l1 = posl[ndl], r1 = posl[ndl]+szl[ndl]-1;
int l2 = posr[ndr], r2 = posr[ndr]+szr[ndr]-1;
query1[max(l1, r1)].pb({min(l2, r2), max(l2, r2), qq});
if(min(l1, r1) > 0) query2[min(l1, r1)-1].pb({min(l2, r2), max(l2, r2), qq});
}
fenwick_tree bit(n);
int inx = 0;
for(int i = 0; i < n; i++){
while(inx < n && points[inx].f == i){
bit.upd(points[inx].sc, 1);
inx++;
}
for(auto [r1, r2, in]: query1[i]){
ans[in]+=bit.sum(r1, r2);
}
for(auto [r1, r2, in]: query2[i]){
ans[in]-=bit.sum(r1, r2);
}
}
for(int &x: ans) x = min(x, 1);
return ans;
}
Compilation message
werewolf.cpp:3: warning: ignoring #pragma comment [-Wunknown-pragmas]
3 | #pragma comment(linker, "/stack:200000000")
|
werewolf.cpp:8: warning: ignoring #pragma GCC optimization [-Wunknown-pragmas]
8 | #pragma GCC optimization ("O3")
|
werewolf.cpp:9: warning: ignoring #pragma GCC optimization [-Wunknown-pragmas]
9 | #pragma GCC optimization ("unroll-loops")
|
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
1 ms |
448 KB |
Output is correct |
2 |
Correct |
1 ms |
332 KB |
Output is correct |
3 |
Correct |
1 ms |
460 KB |
Output is correct |
4 |
Correct |
1 ms |
332 KB |
Output is correct |
5 |
Correct |
1 ms |
336 KB |
Output is correct |
6 |
Correct |
1 ms |
332 KB |
Output is correct |
7 |
Correct |
1 ms |
332 KB |
Output is correct |
8 |
Correct |
1 ms |
332 KB |
Output is correct |
9 |
Correct |
2 ms |
332 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
1 ms |
448 KB |
Output is correct |
2 |
Correct |
1 ms |
332 KB |
Output is correct |
3 |
Correct |
1 ms |
460 KB |
Output is correct |
4 |
Correct |
1 ms |
332 KB |
Output is correct |
5 |
Correct |
1 ms |
336 KB |
Output is correct |
6 |
Correct |
1 ms |
332 KB |
Output is correct |
7 |
Correct |
1 ms |
332 KB |
Output is correct |
8 |
Correct |
1 ms |
332 KB |
Output is correct |
9 |
Correct |
2 ms |
332 KB |
Output is correct |
10 |
Correct |
9 ms |
2732 KB |
Output is correct |
11 |
Correct |
8 ms |
2508 KB |
Output is correct |
12 |
Correct |
8 ms |
2508 KB |
Output is correct |
13 |
Correct |
10 ms |
2764 KB |
Output is correct |
14 |
Correct |
9 ms |
2536 KB |
Output is correct |
15 |
Correct |
12 ms |
3560 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
916 ms |
149588 KB |
Output is correct |
2 |
Correct |
1173 ms |
149172 KB |
Output is correct |
3 |
Correct |
1004 ms |
148900 KB |
Output is correct |
4 |
Correct |
888 ms |
148768 KB |
Output is correct |
5 |
Correct |
862 ms |
148816 KB |
Output is correct |
6 |
Correct |
870 ms |
149172 KB |
Output is correct |
7 |
Correct |
822 ms |
148024 KB |
Output is correct |
8 |
Correct |
1044 ms |
149292 KB |
Output is correct |
9 |
Correct |
845 ms |
149148 KB |
Output is correct |
10 |
Correct |
666 ms |
147772 KB |
Output is correct |
11 |
Correct |
719 ms |
148772 KB |
Output is correct |
12 |
Correct |
725 ms |
148628 KB |
Output is correct |
13 |
Correct |
1184 ms |
149732 KB |
Output is correct |
14 |
Correct |
1165 ms |
149588 KB |
Output is correct |
15 |
Correct |
1190 ms |
149440 KB |
Output is correct |
16 |
Correct |
1190 ms |
149456 KB |
Output is correct |
17 |
Correct |
813 ms |
147660 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
1 ms |
448 KB |
Output is correct |
2 |
Correct |
1 ms |
332 KB |
Output is correct |
3 |
Correct |
1 ms |
460 KB |
Output is correct |
4 |
Correct |
1 ms |
332 KB |
Output is correct |
5 |
Correct |
1 ms |
336 KB |
Output is correct |
6 |
Correct |
1 ms |
332 KB |
Output is correct |
7 |
Correct |
1 ms |
332 KB |
Output is correct |
8 |
Correct |
1 ms |
332 KB |
Output is correct |
9 |
Correct |
2 ms |
332 KB |
Output is correct |
10 |
Correct |
9 ms |
2732 KB |
Output is correct |
11 |
Correct |
8 ms |
2508 KB |
Output is correct |
12 |
Correct |
8 ms |
2508 KB |
Output is correct |
13 |
Correct |
10 ms |
2764 KB |
Output is correct |
14 |
Correct |
9 ms |
2536 KB |
Output is correct |
15 |
Correct |
12 ms |
3560 KB |
Output is correct |
16 |
Correct |
916 ms |
149588 KB |
Output is correct |
17 |
Correct |
1173 ms |
149172 KB |
Output is correct |
18 |
Correct |
1004 ms |
148900 KB |
Output is correct |
19 |
Correct |
888 ms |
148768 KB |
Output is correct |
20 |
Correct |
862 ms |
148816 KB |
Output is correct |
21 |
Correct |
870 ms |
149172 KB |
Output is correct |
22 |
Correct |
822 ms |
148024 KB |
Output is correct |
23 |
Correct |
1044 ms |
149292 KB |
Output is correct |
24 |
Correct |
845 ms |
149148 KB |
Output is correct |
25 |
Correct |
666 ms |
147772 KB |
Output is correct |
26 |
Correct |
719 ms |
148772 KB |
Output is correct |
27 |
Correct |
725 ms |
148628 KB |
Output is correct |
28 |
Correct |
1184 ms |
149732 KB |
Output is correct |
29 |
Correct |
1165 ms |
149588 KB |
Output is correct |
30 |
Correct |
1190 ms |
149440 KB |
Output is correct |
31 |
Correct |
1190 ms |
149456 KB |
Output is correct |
32 |
Correct |
813 ms |
147660 KB |
Output is correct |
33 |
Correct |
1024 ms |
149640 KB |
Output is correct |
34 |
Correct |
1325 ms |
184160 KB |
Output is correct |
35 |
Correct |
1247 ms |
157148 KB |
Output is correct |
36 |
Correct |
994 ms |
152096 KB |
Output is correct |
37 |
Correct |
1177 ms |
153812 KB |
Output is correct |
38 |
Correct |
1069 ms |
154844 KB |
Output is correct |
39 |
Correct |
1069 ms |
152064 KB |
Output is correct |
40 |
Correct |
1606 ms |
217060 KB |
Output is correct |
41 |
Correct |
991 ms |
150536 KB |
Output is correct |
42 |
Correct |
798 ms |
150452 KB |
Output is correct |
43 |
Correct |
1499 ms |
185952 KB |
Output is correct |
44 |
Correct |
1140 ms |
153048 KB |
Output is correct |
45 |
Correct |
1062 ms |
156056 KB |
Output is correct |
46 |
Correct |
992 ms |
153380 KB |
Output is correct |
47 |
Correct |
1216 ms |
151740 KB |
Output is correct |
48 |
Correct |
1169 ms |
150176 KB |
Output is correct |
49 |
Correct |
1161 ms |
151724 KB |
Output is correct |
50 |
Correct |
1151 ms |
150276 KB |
Output is correct |
51 |
Correct |
1431 ms |
217912 KB |
Output is correct |
52 |
Correct |
1450 ms |
217908 KB |
Output is correct |