Submission #395448

#TimeUsernameProblemLanguageResultExecution timeMemory
395448rama_pangNice sequence (IZhO18_sequence)C++17
100 / 100
1750 ms82596 KiB
#include <bits/stdc++.h> using namespace std; int main() { ios::sync_with_stdio(0); cin.tie(0); int T; cin >> T; while (T--) { int N, M; cin >> N >> M; // Let P[] be the prefix sum of A[]. In particular, // P[0] = 0, P[1] = A[1], P[2] = A[1] + A[2], ... // // P[] can be arbitary since A[] can be arbitary. // The condition is: // P[i + N] - P[i] < 0 -> P[i + N] < P[i] // P[i + M] - P[i] > 0 -> P[i + M] > P[i]. // We draw an edge x -> y if P[x] < P[y]. Then, if there // is a strongly connected component, that particular size // is invalid. // // Now, note that if size >= N + M, there is a cycle. Proof: // WLOG, assume N <= M. Then, P[i] < P[i + M] and P[i] < P[i - N]. // We start from node = 0, then node += M, then decrease by N until // node = (node_prv) % N. We do this again, and again. Note that // the maximum index is <= N + M, and eventually we will arrive back // at 0, since we form a cycle at modulo N. // // We can binary search for the answer, checking whether the graph // is a DAG or not. Time complexity: O((N + M) log (N + M)). This // yields 76 points. // // Can we get a tight bound? Consider the process, of +M and -N. // We can actually simulate this process pretty easily without DFS. // Time complexity: O(N + M). vector<int> P(N + M + 1); vector<vector<int>> adj(N + M + 1); for (int i = 0; i <= N + M; i++) { if (i <= N) adj[i].emplace_back(i + M); if (i >= N) adj[i].emplace_back(i - N); } vector<int> topo; vector<int> vis(N + M + 1); vector<int> pos_in_topo(N + M + 1); const auto Calc = [&](int sz) -> bool { topo.clear(); fill(begin(vis), end(vis), 0); const auto Dfs = [&](const auto &self, int u) -> void { vis[u] = 1; for (auto v : adj[u]) if (v <= sz && !vis[v]) self(self, v); topo.emplace_back(u); }; for (int i = 0; i <= sz; i++) if (!vis[i]) { Dfs(Dfs, i); } reverse(begin(topo), end(topo)); for (int i = 0; i <= sz; i++) { pos_in_topo[topo[i]] = i; } for (int i = 0; i <= sz; i++) { for (auto j : adj[i]) if (j <= sz) { if (pos_in_topo[j] < pos_in_topo[i]) { return false; } } } for (int i = 0; i <= sz; i++) P[topo[i]] = i; for (int i = sz; i >= 0; i--) P[i] -= P[0]; return true; }; int ans = 0; int node = 0; fill(begin(vis), end(vis), 0); while (!vis[node]) { vis[node] = 1; ans = max(ans, node); if (node >= N) { node -= N; } else { node += M; } } ans--; assert(node == 0); Calc(ans); cout << ans << '\n'; for (int i = 1; i <= ans; i++) { cout << (P[i] - P[i - 1]) << " \n"[i == ans]; } } return 0; }
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...