Submission #392366

# Submission time Handle Problem Language Result Execution time Memory
392366 2021-04-20T20:48:35 Z MarcoMeijer Koala Game (APIO17_koala) C++14
90 / 100
80 ms 332 KB
#include "koala.h"
#include <bits/stdc++.h>
using namespace std;

// macros
typedef long long ll;
typedef long double ld;
typedef pair<int, int> ii;
typedef pair<ll, ll> lll;
typedef tuple<int, int, int> iii;
typedef vector<int> vi;
typedef vector<ii> vii;
typedef vector<iii> viii;
typedef vector<ll> vll;
typedef vector<lll> vlll;
#define REP(a,b,c) for(int a=int(b); a<int(c); a++)
#define RE(a,c) REP(a,0,c)
#define RE1(a,c) REP(a,1,c+1)
#define REI(a,b,c) REP(a,b,c+1)
#define REV(a,b,c) for(int a=int(c-1); a>=int(b); a--)
#define FOR(a,b) for(auto& a : b)
#define all(a) a.begin(), a.end()
#define INF 1e9
#define EPS 1e-9
#define pb push_back
#define popb pop_back
#define fi first
#define se second
#define sz size()
mt19937_64 rng(chrono::steady_clock::now().time_since_epoch().count());

const int MX=500;

int B[MX], R[MX];

int minValue(int N, int W) {
    RE(i,N) B[i] = 0;
    B[1] = 1;
    playRound(B,R);
    RE(i,N) if(R[i] == 0) return i;
    return 0;
}

int maxValue(int N, int W) {
    vi possible;
    RE(i,N) possible.push_back(i);
    while(possible.size() > 1) {
        int weight = W / possible.size();
        RE(i,N) B[i] = 0;
        FOR(u,possible) B[u] = weight;
        playRound(B,R);
        possible.clear();
        RE(i,N) if(R[i] > weight) possible.push_back(i);
    }
    return possible[0];
}

int greaterValue(int N, int W, int i, int j) {
    int lb=1, ub=10;
    while(lb != ub) {
        int mid=(lb+ub)/2;
        RE(i,N) B[i] = 0;
        B[i] = mid;
        B[j] = mid;
        playRound(B,R);
        if(R[i] <= mid && R[j] <= mid) ub=mid-1;
        if(R[i] >  mid && R[j] >  mid) lb=mid+1;
        if(R[i] <= mid && R[j] >  mid) return j;
        if(R[i] >  mid && R[j] <= mid) return i;
    }
    RE(i,N) B[i] = 0;
    B[i] = lb;
    B[j] = lb;
    playRound(B,R);
    if(R[i] <= lb && R[j] > lb) return j;
    if(R[i] > lb && R[j] <= lb) return i;
    return i;
}

int greaterValue(int N, int W) {
    return greaterValue(N,W,0,1);
}

void findValues1(int N, int W, int lb, int ub, vi f, int *P) {
    if(f.size() == 1) {
        P[f[0]] = lb;
        return;
    }

    int weight = W / f.size();
    RE(i,N) B[i] = 0;
    FOR(u,f) B[u] = weight;
    playRound(B,R);

    vi left;
    vi right;
    FOR(u,f) (R[u] > weight ? right : left).push_back(u);
    findValues1(N,W,lb,lb+left.size()-1,left,P);
    findValues1(N,W,ub-right.size()+1,ub,right,P);
}
void findValues2(int N, int W, int lb, int ub, vi f, int *P) {
    if(f.size() == 1) {
        P[f[0]] = lb;
        return;
    }

    int LB=1, UB=W/f.size();
    while(true) {
        int mid=((LB+UB)*2)/3;
        RE(i,N) B[i] = 0;
        FOR(u,f) B[u] = mid;
        playRound(B,R);
        vi left;
        vi right;
        FOR(u,f) (R[u] > mid ? right : left).push_back(u);
        if(left.empty()) LB=mid+1;
        else if(right.empty()) UB=mid-1;
        else {
            findValues2(N,W,lb,lb+left.size()-1,left,P);
            findValues2(N,W,ub-right.size()+1,ub,right,P);
            break;
        }
    }
}

void allValues(int N, int W, int *P) {
    vi f;
    RE(i,N) f.push_back(i);
    if (W == 2*N) {
        findValues1(N,W,1,N,f,P);
    } else {
        findValues2(N,W,1,N,f,P);
    }
}
# Verdict Execution time Memory Grader output
1 Correct 7 ms 200 KB Output is correct
2 Correct 6 ms 200 KB Output is correct
3 Correct 6 ms 200 KB Output is correct
4 Correct 6 ms 200 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 18 ms 320 KB Output is correct
2 Correct 18 ms 204 KB Output is correct
3 Correct 18 ms 200 KB Output is correct
4 Correct 18 ms 200 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 73 ms 332 KB Output is correct
2 Correct 80 ms 320 KB Output is correct
3 Correct 74 ms 328 KB Output is correct
4 Correct 70 ms 332 KB Output is correct
5 Correct 72 ms 320 KB Output is correct
6 Correct 72 ms 308 KB Output is correct
7 Correct 71 ms 328 KB Output is correct
8 Correct 72 ms 332 KB Output is correct
9 Correct 72 ms 320 KB Output is correct
10 Correct 70 ms 332 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 9 ms 200 KB Output is correct
2 Correct 9 ms 328 KB Output is correct
3 Correct 9 ms 324 KB Output is correct
4 Correct 9 ms 328 KB Output is correct
5 Correct 10 ms 328 KB Output is correct
6 Correct 8 ms 200 KB Output is correct
7 Correct 8 ms 328 KB Output is correct
8 Correct 9 ms 200 KB Output is correct
9 Correct 8 ms 324 KB Output is correct
10 Correct 8 ms 200 KB Output is correct
11 Correct 9 ms 328 KB Output is correct
12 Correct 8 ms 320 KB Output is correct
13 Correct 8 ms 328 KB Output is correct
14 Correct 8 ms 328 KB Output is correct
15 Correct 9 ms 328 KB Output is correct
16 Correct 9 ms 324 KB Output is correct
17 Correct 9 ms 200 KB Output is correct
18 Correct 9 ms 324 KB Output is correct
19 Correct 8 ms 328 KB Output is correct
20 Correct 9 ms 200 KB Output is correct
# Verdict Execution time Memory Grader output
1 Partially correct 10 ms 328 KB Output is partially correct
2 Partially correct 10 ms 328 KB Output is partially correct
3 Partially correct 11 ms 324 KB Output is partially correct
4 Partially correct 10 ms 328 KB Output is partially correct
5 Partially correct 10 ms 328 KB Output is partially correct
6 Partially correct 10 ms 328 KB Output is partially correct
7 Partially correct 10 ms 320 KB Output is partially correct
8 Partially correct 10 ms 328 KB Output is partially correct
9 Partially correct 11 ms 328 KB Output is partially correct
10 Partially correct 10 ms 328 KB Output is partially correct
11 Partially correct 10 ms 328 KB Output is partially correct
12 Partially correct 11 ms 324 KB Output is partially correct
13 Partially correct 10 ms 328 KB Output is partially correct
14 Partially correct 10 ms 324 KB Output is partially correct
15 Partially correct 10 ms 200 KB Output is partially correct
16 Partially correct 10 ms 204 KB Output is partially correct
17 Partially correct 10 ms 328 KB Output is partially correct
18 Partially correct 10 ms 324 KB Output is partially correct
19 Partially correct 10 ms 328 KB Output is partially correct
20 Partially correct 10 ms 328 KB Output is partially correct
21 Partially correct 10 ms 328 KB Output is partially correct
22 Partially correct 10 ms 200 KB Output is partially correct
23 Partially correct 10 ms 328 KB Output is partially correct
24 Partially correct 10 ms 328 KB Output is partially correct
25 Partially correct 10 ms 324 KB Output is partially correct
26 Partially correct 10 ms 328 KB Output is partially correct
27 Partially correct 10 ms 328 KB Output is partially correct
28 Partially correct 11 ms 200 KB Output is partially correct
29 Partially correct 10 ms 200 KB Output is partially correct
30 Partially correct 10 ms 324 KB Output is partially correct
31 Partially correct 10 ms 328 KB Output is partially correct
32 Partially correct 10 ms 328 KB Output is partially correct
33 Partially correct 10 ms 320 KB Output is partially correct
34 Partially correct 10 ms 328 KB Output is partially correct
35 Partially correct 10 ms 200 KB Output is partially correct
36 Partially correct 10 ms 200 KB Output is partially correct
37 Partially correct 10 ms 328 KB Output is partially correct
38 Partially correct 11 ms 328 KB Output is partially correct
39 Partially correct 10 ms 328 KB Output is partially correct
40 Partially correct 10 ms 328 KB Output is partially correct