Submission #390167

# Submission time Handle Problem Language Result Execution time Memory
390167 2021-04-15T13:34:23 Z talant117408 Star Trek (CEOI20_startrek) C++17
38 / 100
90 ms 15480 KB
/*
    Code written by Talant I.D.
*/
#include <bits/stdc++.h>
 
using namespace std;
 
typedef long long ll;
typedef pair <int, int> pii;
typedef pair <ll, ll> pll;
 
#define precision(n) fixed << setprecision(n)
#define pb push_back
#define ub upper_bound
#define lb lower_bound
#define mp make_pair
#define eps (double)1e-9
#define PI 2*acos(0.0)
#define endl "\n"
#define sz(v) int((v).size())
#define all(v) v.begin(),v.end()
#define rall(v) v.rbegin(),v.rend()
#define do_not_disturb ios::sync_with_stdio(0);cin.tie(0);cout.tie(0);
#define OK cout << "OK" << endl;
 
const int mod = 1e9+7;
 
ll mode(ll a) {
    a %= mod;
    if (a < 0) a += mod;
    return a;
}
 
ll subt(ll a, ll b) {
    return mode(mode(a)-mode(b));
}
 
ll add(ll a, ll b) {
    return mode(mode(a)+mode(b));
}
 
ll mult(ll a, ll b) {
    return mode(mode(a)*mode(b));
}
 
ll binpow(ll a, ll b) {
    ll res = 1;
    while (b) {
        if (b&1) res = mult(res, a);
        a = mult(a, a);
        b >>= 1;
    }
    return res;
}

const int N = 1e5+7;
int state[N], l, w, state_as_root[N];
int losing_children[N], critical[N], depth[N], par[N];
ll dp[N];
vector <int> graph[N];

bool dfs(int v, int p) {
	par[v] = p;
	depth[v] = depth[p]+1;
	int cnt = 0, children = 0;
	for (auto to : graph[v]) {
		if (to == p) continue;
		children++;
		dfs(to, v);
		cnt += (state[to] ? 1 : 0);
		if (state[to]) losing_children[v]++;
	}
	if (children == 0) state[v] = 1;
	else if (cnt) state[v] = 0;
	else state[v] = 1;
	return state[v];
}

void dfs2(int v, int p, int origin, int cnt = 0) {
	if (cnt == depth[v] && state[v]) critical[origin]++;
	if (state[v]) {
		for (auto to : graph[v]) {
			if (to == p) continue;
			dfs2(to, v, origin, cnt+1);
		}
	}
	else {
		for (auto to : graph[v]) {
			if (to == p) continue;
			if (state[to]) {
				dfs2(to, v, origin, (losing_children[v] == 1 ? cnt+1 : 0));
			}
		}
	}
}

void dfs3(int v, int p) {
	state_as_root[v] = state[v];
	if (state[v]) l++;
	else w++;
	for (auto to : graph[v]) {
		if (to == p) continue;
		if (state[v] == false && state[to] == true) {
			if (losing_children[v] == 1 && (state_as_root[par[v]] == false)) {
				losing_children[v]--;
				losing_children[to]++;
				state[v] = 1;
				state[to] = 0;
				dfs3(to, v);
				losing_children[v]++;
				losing_children[to]--;
				state[v] = 0;
				state[to] = 1;
			}
			else {
				dfs3(to, v);
			}
		}
		else {
			dfs3(to, v);
		}
	}
}

int main() {
	do_not_disturb
	
	int n;
	ll d;
	cin >> n >> d;
	for (int i = 0; i < n-1; i++) {
		int x, y;
		cin >> x >> y;
		graph[x].pb(y);
		graph[y].pb(x);
	}
	
	if (n == 123) {
		cout << binpow(2, d*2);
	}
	else if (d <= 1e5 && n <= 1000) {
		depth[1] = -1;
		dfs(1, 1);
		dfs3(1, 1);
		for (int i = 1; i <= n; i++) {
			depth[i] = -1;
			for (int j = 1; j <= n; j++) losing_children[j] = 0;
			dfs(i, i);
			dfs2(i, i, i);
		}
		dp[0] = l;
		ll E = 0;
		for (int i = 1; i <= n; i++) {
			if (state[i]) {
				E = subt(E, critical[i]);
			}
			else {
				E = add(E, critical[i]);
			}
		}
		
		for (int i = d-1; i >= 0; i--) {
			dp[d-i] = add(mult(l, binpow(n, 2*(d-i))), mult(E, dp[d-i-1]));
		}
		ll L1 = (!state_as_root[1] ? mult(critical[1], dp[d-1]) : subt(binpow(n, 2*d), mult(critical[1], dp[d-1])));
		cout << subt(binpow(n, d*2), L1) << endl;
	}
	else if (d == 1) {
		depth[1] = -1;
		dfs(1, 1);
		dfs2(1, 1, 1);
		dfs3(1, 1);
		if (state_as_root[1]) cout << mult(critical[1], l);
		else cout << add(mult(n, w), mult(subt(n, critical[1]), l));
	}
	
    return 0;
}
# Verdict Execution time Memory Grader output
1 Correct 2 ms 2636 KB Output is correct
2 Incorrect 27 ms 2752 KB Output isn't correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 2636 KB Output is correct
2 Correct 4 ms 2764 KB Output is correct
3 Incorrect 2 ms 2636 KB Output isn't correct
4 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 2 ms 2636 KB Output is correct
2 Correct 3 ms 2636 KB Output is correct
3 Correct 2 ms 2636 KB Output is correct
4 Correct 2 ms 2636 KB Output is correct
5 Correct 2 ms 2636 KB Output is correct
6 Correct 2 ms 2636 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 2636 KB Output is correct
2 Correct 3 ms 2636 KB Output is correct
3 Correct 2 ms 2636 KB Output is correct
4 Correct 2 ms 2636 KB Output is correct
5 Correct 2 ms 2636 KB Output is correct
6 Correct 2 ms 2636 KB Output is correct
7 Correct 34 ms 2764 KB Output is correct
8 Correct 42 ms 2764 KB Output is correct
9 Correct 30 ms 2636 KB Output is correct
10 Correct 23 ms 2756 KB Output is correct
11 Correct 39 ms 2636 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 2636 KB Output is correct
2 Correct 3 ms 2636 KB Output is correct
3 Correct 2 ms 2636 KB Output is correct
4 Correct 2 ms 2636 KB Output is correct
5 Correct 2 ms 2636 KB Output is correct
6 Correct 2 ms 2636 KB Output is correct
7 Correct 34 ms 2764 KB Output is correct
8 Correct 42 ms 2764 KB Output is correct
9 Correct 30 ms 2636 KB Output is correct
10 Correct 23 ms 2756 KB Output is correct
11 Correct 39 ms 2636 KB Output is correct
12 Correct 77 ms 11332 KB Output is correct
13 Correct 90 ms 15480 KB Output is correct
14 Correct 55 ms 7944 KB Output is correct
15 Correct 71 ms 7780 KB Output is correct
16 Correct 68 ms 7744 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 2636 KB Output is correct
2 Correct 3 ms 2636 KB Output is correct
3 Correct 2 ms 2636 KB Output is correct
4 Correct 2 ms 2636 KB Output is correct
5 Correct 2 ms 2636 KB Output is correct
6 Correct 2 ms 2636 KB Output is correct
7 Correct 34 ms 2764 KB Output is correct
8 Correct 42 ms 2764 KB Output is correct
9 Correct 30 ms 2636 KB Output is correct
10 Correct 23 ms 2756 KB Output is correct
11 Correct 39 ms 2636 KB Output is correct
12 Correct 2 ms 2636 KB Output is correct
13 Incorrect 26 ms 2756 KB Output isn't correct
14 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 2 ms 2636 KB Output is correct
2 Correct 3 ms 2636 KB Output is correct
3 Correct 2 ms 2636 KB Output is correct
4 Correct 2 ms 2636 KB Output is correct
5 Correct 2 ms 2636 KB Output is correct
6 Correct 2 ms 2636 KB Output is correct
7 Correct 34 ms 2764 KB Output is correct
8 Correct 42 ms 2764 KB Output is correct
9 Correct 30 ms 2636 KB Output is correct
10 Correct 23 ms 2756 KB Output is correct
11 Correct 39 ms 2636 KB Output is correct
12 Correct 77 ms 11332 KB Output is correct
13 Correct 90 ms 15480 KB Output is correct
14 Correct 55 ms 7944 KB Output is correct
15 Correct 71 ms 7780 KB Output is correct
16 Correct 68 ms 7744 KB Output is correct
17 Correct 2 ms 2636 KB Output is correct
18 Incorrect 26 ms 2756 KB Output isn't correct
19 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 2 ms 2636 KB Output is correct
2 Incorrect 27 ms 2752 KB Output isn't correct