This submission is migrated from previous version of oj.uz, which used different machine for grading. This submission may have different result if resubmitted.
#include <bits/stdc++.h>
using namespace std;
class SegTree {
public:
int sz;
vector<int> tree;
SegTree(int sz = 0) : sz(sz), tree(2 * sz, -1) {}
void Modify(int p, int x) {
tree[p += sz] = x;
for (p /= 2; p > 0; p /= 2) {
tree[p] = max(tree[p * 2], tree[p * 2 + 1]);
}
}
int Query(int l, int r) {
int res = -1;
for (l += sz, r += sz + 1; l < r; l /= 2, r /= 2) {
if (l & 1) res = max(res, tree[l++]);
if (r & 1) res = max(res, tree[--r]);
}
return res;
}
};
int main() {
ios::sync_with_stdio(0);
cin.tie(0);
int N;
cin >> N;
vector<vector<int>> adj(N);
for (int i = 1; i < N; i++) {
int u, v;
cin >> u >> v;
u--, v--;
adj[u].emplace_back(v);
adj[v].emplace_back(u);
}
// Let's fix X, the number of attendees.
// Define size_r(v) = number of nodes in subtree of v, if rooted at r.
//
// If X is odd, then the answer is 1.
// Proof: Assume there is a vertex u which minimizes the total sum of distance.
// Then, by moving to an adjacent vertex v, the total sum is changed by
// size_u(v) - size_v(u). Since X is odd, this total sum != 0. Thus there can
// only be a single optimal u.
//
// If X is even, then the optimal meeting nodes form a path.
// Assume u and v is the endpoint of this path. size_u(v) >= X/2 and size_v(u) >= X/2
// must be satisfied (we put X/2 in the subtree of both endpoints).
// The number of meeting points is the number of nodes in the path from u to v.
//
// We can enumerate every possible path with centroid decomposition.
// Time complexity: O(N log^2 N).
vector<int> ans(N + 1, 1);
vector<int> siz(N);
vector<int> dead(N);
vector<int> depth(N);
const auto GetCentroid = [&](int s) -> int {
const auto Dfs = [&](const auto &self, int u, int p) -> void {
siz[u] = 1;
for (auto v : adj[u]) if (!dead[v] && v != p) {
self(self, v, u);
siz[u] += siz[v];
}
};
Dfs(Dfs, s, -1);
int p = -1, u = s;
while (u != -1) {
pair<int, int> mx = {-1, -1};
for (auto v : adj[u]) if (!dead[v] && v != p) {
mx = max(mx, {siz[v], v});
}
if (mx.first * 2 <= siz[s]) {
break;
} else {
tie(p, u) = pair(u, mx.second);
}
}
assert(u != -1);
return u;
};
const auto Dfs = [&](const auto &self, int u, int p, vector<int> &ls) -> void {
ls.emplace_back(u);
siz[u] = 1;
depth[u] = p == -1 ? 0 : (depth[p] + 1);
for (auto v : adj[u]) if (!dead[v] && v != p) {
self(self, v, u, ls);
siz[u] += siz[v];
}
};
const auto Decompose = [&](const auto &self, int centroid) -> void {
centroid = GetCentroid(centroid);
depth[centroid] = 0;
static SegTree segtree(N + 1);
static vector<vector<int>> sub(N);
static vector<vector<pair<int, int>>> ls(N + 1);
for (int rep = 0; rep < 2; rep++) {
reverse(begin(adj[centroid]), end(adj[centroid]));
Dfs(Dfs, centroid, -1, sub[centroid]); sub[centroid].clear();
for (auto v : adj[centroid]) if (!dead[v]) {
Dfs(Dfs, v, centroid, sub[v]);
for (auto x : sub[v]) {
if (int other = segtree.Query(siz[x], N); other != -1) {
assert(siz[x] * 2 <= N);
ans[siz[x] * 2] = max(ans[siz[x] * 2], depth[x] + 1 + other);
}
if (siz[x] <= siz[centroid] - siz[v]) {
ans[siz[x] * 2] = max(ans[siz[x] * 2], depth[x] + 1);
}
}
for (auto x : sub[v]) {
if (segtree.Query(siz[x], siz[x]) < depth[x]) {
segtree.Modify(siz[x], depth[x]);
}
}
}
for (auto v : adj[centroid]) if (!dead[v]) {
for (auto x : sub[v]) {
segtree.Modify(siz[x], -1);
ls[siz[x]].clear();
}
sub[v].clear();
}
}
dead[centroid] = 1;
for (auto v : adj[centroid]) if (!dead[v]) self(self, v);
};
Decompose(Decompose, 0);
for (int i = N; i >= 2; i--) {
ans[i - 2] = max(ans[i - 2], ans[i]);
}
for (int i = 1; i <= N; i++) {
cout << ans[i] << '\n';
}
return 0;
}
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |