Submission #388819

#TimeUsernameProblemLanguageResultExecution timeMemory
388819rama_pangMeetings 2 (JOI21_meetings2)C++17
100 / 100
2755 ms71660 KiB
#include <bits/stdc++.h> using namespace std; class SegTree { public: int sz; vector<int> tree; SegTree(int sz = 0) : sz(sz), tree(2 * sz, -1) {} void Modify(int p, int x) { tree[p += sz] = x; for (p /= 2; p > 0; p /= 2) { tree[p] = max(tree[p * 2], tree[p * 2 + 1]); } } int Query(int l, int r) { int res = -1; for (l += sz, r += sz + 1; l < r; l /= 2, r /= 2) { if (l & 1) res = max(res, tree[l++]); if (r & 1) res = max(res, tree[--r]); } return res; } }; int main() { ios::sync_with_stdio(0); cin.tie(0); int N; cin >> N; vector<vector<int>> adj(N); for (int i = 1; i < N; i++) { int u, v; cin >> u >> v; u--, v--; adj[u].emplace_back(v); adj[v].emplace_back(u); } // Let's fix X, the number of attendees. // Define size_r(v) = number of nodes in subtree of v, if rooted at r. // // If X is odd, then the answer is 1. // Proof: Assume there is a vertex u which minimizes the total sum of distance. // Then, by moving to an adjacent vertex v, the total sum is changed by // size_u(v) - size_v(u). Since X is odd, this total sum != 0. Thus there can // only be a single optimal u. // // If X is even, then the optimal meeting nodes form a path. // Assume u and v is the endpoint of this path. size_u(v) >= X/2 and size_v(u) >= X/2 // must be satisfied (we put X/2 in the subtree of both endpoints). // The number of meeting points is the number of nodes in the path from u to v. // // We can enumerate every possible path with centroid decomposition. // Time complexity: O(N log^2 N). vector<int> ans(N + 1, 1); vector<int> siz(N); vector<int> dead(N); vector<int> depth(N); const auto GetCentroid = [&](int s) -> int { const auto Dfs = [&](const auto &self, int u, int p) -> void { siz[u] = 1; for (auto v : adj[u]) if (!dead[v] && v != p) { self(self, v, u); siz[u] += siz[v]; } }; Dfs(Dfs, s, -1); int p = -1, u = s; while (u != -1) { pair<int, int> mx = {-1, -1}; for (auto v : adj[u]) if (!dead[v] && v != p) { mx = max(mx, {siz[v], v}); } if (mx.first * 2 <= siz[s]) { break; } else { tie(p, u) = pair(u, mx.second); } } assert(u != -1); return u; }; const auto Dfs = [&](const auto &self, int u, int p, vector<int> &ls) -> void { ls.emplace_back(u); siz[u] = 1; depth[u] = p == -1 ? 0 : (depth[p] + 1); for (auto v : adj[u]) if (!dead[v] && v != p) { self(self, v, u, ls); siz[u] += siz[v]; } }; const auto Decompose = [&](const auto &self, int centroid) -> void { centroid = GetCentroid(centroid); depth[centroid] = 0; static SegTree segtree(N + 1); static vector<vector<int>> sub(N); static vector<vector<pair<int, int>>> ls(N + 1); for (int rep = 0; rep < 2; rep++) { reverse(begin(adj[centroid]), end(adj[centroid])); Dfs(Dfs, centroid, -1, sub[centroid]); sub[centroid].clear(); for (auto v : adj[centroid]) if (!dead[v]) { Dfs(Dfs, v, centroid, sub[v]); for (auto x : sub[v]) { if (int other = segtree.Query(siz[x], N); other != -1) { assert(siz[x] * 2 <= N); ans[siz[x] * 2] = max(ans[siz[x] * 2], depth[x] + 1 + other); } if (siz[x] <= siz[centroid] - siz[v]) { ans[siz[x] * 2] = max(ans[siz[x] * 2], depth[x] + 1); } } for (auto x : sub[v]) { if (segtree.Query(siz[x], siz[x]) < depth[x]) { segtree.Modify(siz[x], depth[x]); } } } for (auto v : adj[centroid]) if (!dead[v]) { for (auto x : sub[v]) { segtree.Modify(siz[x], -1); ls[siz[x]].clear(); } sub[v].clear(); } } dead[centroid] = 1; for (auto v : adj[centroid]) if (!dead[v]) self(self, v); }; Decompose(Decompose, 0); for (int i = N; i >= 2; i--) { ans[i - 2] = max(ans[i - 2], ans[i]); } for (int i = 1; i <= N; i++) { cout << ans[i] << '\n'; } return 0; }
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...