# | Time | Username | Problem | Language | Result | Execution time | Memory |
---|---|---|---|---|---|---|---|
385512 | LucaDantas | timeismoney (balkan11_timeismoney) | C++17 | 553 ms | 748 KiB |
This submission is migrated from previous version of oj.uz, which used different machine for grading. This submission may have different result if resubmitted.
#include<bits/stdc++.h>
using namespace std;
#define pb push_back
constexpr int maxn = 210, maxm = 1e4+10;
int n, m;
struct DSU
{
int pai[maxn], peso[maxn];
bool get_ans = 0;
void init() { for(int i = 0; i <= n; i++) pai[i] = i, peso[i] = 1; }
int find(int x) { return pai[x]==x?x:pai[x]=find(pai[x]); }
bool join(int a, int b) {
int x = a, y = b;
a = find(a), b = find(b);
if(a == b) return 0;
if(peso[a] < peso[b])
swap(a, b);
pai[b] = a;
peso[a] += peso[b];
if(get_ans) printf("%d %d\n", x, y);
return 1;
}
} dsu;
struct Edge
{
int a, b, t, c;
} edges[maxm];
long long val(Edge x, int A, int B) {
return 1ll * x.t * A + 1ll * x.c * B;
}
pair<int,int> get(int A, int B) {
// printf("%d %d\n", A, B);
dsu.init();
pair<int,int> ans = {0, 0};
sort(edges, edges+m, [A, B](Edge x, Edge y) {
if(val(x, A, B) == val(y, A, B)) return x.t < y.t;
return val(x, A, B) < val(y, A, B);
});
for(int i = 0; i < m; i++)
if(dsu.join(edges[i].a, edges[i].b))
ans.first += edges[i].t, ans.second += edges[i].c;
return ans;
}
struct ANS {
long long v; int t, c, A, B;
ANS() : v() {}
ANS(int T, int C, int a, int b) {
v = 1ll*T*C, t = T, c = C, A = a, B = b;
}
} ans;
ANS min(ANS a, ANS b) {
if(a.v < b.v) return a;
return b;
}
using pii = pair<int,int>;
bool cross(pii a, pii b, pii c) {
b.first -= a.first;
c.first -= a.first;
b.second -= a.second;
c.second -= a.second;
return (1ll * b.first * c.second - 1ll * b.second * c.first) != 0ll;
}
void solve(pii l, pii r) {
// we want to find the vector parallel to the line between l and r
// because the point that minimizes the dot with such vector is
// the 'furthest point' in the direction of that line
// we can find such vector by taking the slope of the line and
// using the standard formula to calculate the slope of the parelell
// line.
int x = r.first - l.first, y = r.second - l.second;
pii m = get(-y, x); // keep things positive for simplicity
ans = min(ans, ANS(m.first, m.second, -y, x));
if(cross(l, m, r)) {
solve(l, m);
solve(m, r);
}
}
int main() {
scanf("%d %d", &n, &m);
for(int i = 0; i < m; i++) {
int a, b, t, c; scanf("%d %d %d %d", &a, &b, &t, &c);
edges[i] = {a, b, t, c};
}
pair<int,int> l = get(1, 0);
pair<int,int> r = get(0, 1);
ans = min(ANS(l.first, l.second, 1, 0), ANS(r.first, r.second, 0, 1));
solve(l, r);
dsu.get_ans = 1;
printf("%d %d\n", ans.t, ans.c);
get(ans.A, ans.B);
}
Compilation message (stderr)
# | Verdict | Execution time | Memory | Grader output |
---|---|---|---|---|
Fetching results... |