Submission #384829

# Submission time Handle Problem Language Result Execution time Memory
384829 2021-04-02T11:22:48 Z kostia244 Designated Cities (JOI19_designated_cities) C++17
39 / 100
657 ms 65276 KB
#include<bits/stdc++.h>
using namespace std;
using ll = long long;
const int maxn = 2e5 + 12;
int n, cst[2*maxn];
ll edgesum = 0;
vector<array<int, 2>> g[maxn];


ll sub[maxn];
void sub_cost(int v, int p) {
    sub[v] = 0;
    for(auto [i, id] : g[v]) if(i != p) {
        sub_cost(i, v);
        sub[v] += sub[i] + cst[id];
    }
}
ll arb[maxn];
void reroot_cost(int v, int p, ll sum) {
    arb[v] = sum;
    for(auto [i, id] : g[v]) if(i!=p) {
        reroot_cost(i, v, sum-cst[id]+cst[id^1]);
    }
}
ll greedy[maxn], used[maxn];
array<ll, 2> find_leaf(int v, int p) {
    array<ll, 2> ans = {0, v};
    for(auto [i, id] : g[v]) if(i != p) {
        auto t = find_leaf(i, v);
        //cout << t[0]+( cst[id^1]*!used[id^1]) << endl;
        t[0] += cst[id^1]*!used[id^1];
        ans = max(ans, t);
    }
    return ans;
}

array<ll, 2> far[maxn];
void sub_far(int v, int p) {
    far[v] = {0, -(1ll<<56)};
    for(auto &[i, id] : g[v]) if(i != p) {
        sub_far(i, v);
        auto t = far[i];
        t[0] += cst[id^1];
        t[1] += cst[id^1];
        if(far[v][0] < t[0])
            swap(far[v][0], t[0]);
        far[v][1] = max(far[v][1], t[0]);
    }
}
ll F[maxn];
void reroot_far(int v, int p, ll over) {
    F[v] = max(far[v][0], over);
    //cout << v << " -- " << F[v] << endl;
    for(auto [i, id] : g[v]) if(i != p) {
        reroot_far(i, v, cst[id]+max(over, far[i][0]+cst[id^1] == far[v][0] ? far[v][1] : far[v][0]));
    }
}
ll solFor2 = 0;
int solve2() {
    sub_far(1, 0);
    reroot_far(1, 0, -(1ll<<60));
    array<ll, 2> sol = {-(1ll<<60), -1};
    for(int i = 1; i <= n; i++)
        sol = max(sol, {F[i]+arb[i], i});
    //cout << edgesum << " ? " << sol[0] << " " << sol[1] << endl;
    //cout << arb[3] << " " << arb[4] << endl;
    //cout << sol[0] << "/ " << edgesum << endl;
    solFor2 = edgesum - sol[0];
    return sol[1];
}

int par[maxn], par_edge[maxn], tin[maxn], tout[maxn], timer = 1;
int tinToV[maxn];
vector<ll> dep;
void find_pars(int v, int p, ll d) {
    tin[v] = timer++;
    dep[tin[v]] = d;
    tinToV[tin[v]] = v;
    for(auto [i, id] : g[v]) if(i != p) {
        par[i] = v;
        par_edge[i] = id^1;
        find_pars(i, v, d + cst[id^1]);
    }
    tout[v] = timer-1;
}

struct SegTree {
    struct Node {
        array<ll, 2> val;
        ll lazy;
        Node(int x = 0) : val{x, 0}, lazy(0) {}
        Node(array<ll, 2> x) : val{x[0], x[1]}, lazy(0) {}
        void apply(ll x) {
            lazy += x;
            val[0] += x;
        }
        void push(Node &l, Node &r) {
            l.apply(lazy), r.apply(lazy);
            lazy = 0;
        }
        friend Node operator+(const Node &a, const Node &b) {
            return Node(max(a.val, b.val));
        }
    };
    int n;
    vector<Node> tree;
    SegTree(int n) : n(n), tree(4*n) {}
    void build(int v, int l, int r, vector<ll> &dep) {
        if(l == r) {
            tree[v].val = {dep[l], l};
            return;
        }
        int mid = (l+r)/2;
        build(2*v, l, mid, dep);
        build(2*v+1, mid+1, r, dep);
        tree[v] = tree[2*v]+tree[2*v+1];
    }
    void build(vector<ll> &dep) {
        build(1, 1, n, dep);
    }
    void update(int v, int l, int r, int ql, int qr, ll add) {
        if(r < ql || qr < l) return;
        if(ql <= l && r <= qr) {
            tree[v].apply(add);
            return;
        }
        int mid = (l+r)/2;
        tree[v].push(tree[2*v], tree[2*v+1]);
        update(2*v, l, mid, ql, qr, add);
        update(2*v+1, mid+1, r, ql, qr, add);
        tree[v] = tree[2*v]+tree[2*v+1];
    }
    void update(int ql, int qr, ll add) {
        update(1, 1, n, ql, qr, add);
    }
    Node query(int v, int l, int r, int ql, int qr) {
        if(r < ql || qr < l) return Node();
        if(ql <= l && r <= qr) return tree[v];
        int mid = (l+r)/2;
        tree[v].push(tree[2*v], tree[2*v+1]);
        return query(2*v, l, mid, ql, qr) + query(2*v+1, mid+1, r, ql, qr);
    }
    array<ll, 2> query(int ql, int qr) {
        return query(1, 1, n, ql, qr).val;
    }
};

void solve(int v) {
    for(int i = 0; i < 2*n; i++) used[i] = 0;
    dep.resize(n+1);
    find_pars(v, 0, 0);
    sub_cost(v, 0);
    ll cur = sub[v];
    SegTree st(n);
    st.build(dep);
    //for(int i = 1; i <= n; i++)
    //    cout << st.query(tin[i], tin[i])[0] << " vs " << dep[i] << endl;
    //cout << '\n';
    for(int i = 2; i <= n; i++) {
        auto [add, x] = st.query(1, n);
        cur += add;
        x = tinToV[x];
        greedy[i] = edgesum - cur;
        for(; x != v && !used[par_edge[x]]; x = par[x]) {
            st.update(tin[x], tout[x], -cst[par_edge[x]]);
            used[par_edge[x]] = 1;
        }
    }
}

int main() {
    cin.tie(0)->sync_with_stdio(0);
    cin >> n;
    for(int f, t, x, y, i = 1; i < n; i++) {
        cin >> f >> t >> cst[2*i-1] >> cst[2*i-2];
        edgesum += cst[2*i-1];
        edgesum += cst[2*i-2];
        g[f].push_back({t, 2*i-2});
        g[t].push_back({f, 2*i-1});
    }
    sub_cost(1, 0);
    reroot_cost(1, 0, sub[1]);
    //for(int i = 1; i <= n; i++) cout << arb[i] << " "; cout << endl;
    auto point = solve2();

    memset(greedy, 0x4f, sizeof greedy);
    solve(point);

    int q;
    cin >> q;
    greedy[1] = edgesum-*max_element(arb+1, arb+n+1);
    //greedy[2] = solFor2;
    for(int t; q--;) {
        cin >> t;
        cout << greedy[t] << '\n';
    }
}

Compilation message

designated_cities.cpp: In function 'int main()':
designated_cities.cpp:174:19: warning: unused variable 'x' [-Wunused-variable]
  174 |     for(int f, t, x, y, i = 1; i < n; i++) {
      |                   ^
designated_cities.cpp:174:22: warning: unused variable 'y' [-Wunused-variable]
  174 |     for(int f, t, x, y, i = 1; i < n; i++) {
      |                      ^
# Verdict Execution time Memory Grader output
1 Correct 5 ms 6636 KB Output is correct
2 Correct 5 ms 6636 KB Output is correct
3 Correct 6 ms 6784 KB Output is correct
4 Correct 5 ms 6636 KB Output is correct
5 Correct 6 ms 6636 KB Output is correct
6 Correct 5 ms 6636 KB Output is correct
7 Correct 5 ms 6636 KB Output is correct
8 Correct 5 ms 6636 KB Output is correct
9 Correct 5 ms 6636 KB Output is correct
10 Correct 5 ms 6636 KB Output is correct
11 Correct 5 ms 6636 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 5 ms 6636 KB Output is correct
2 Correct 454 ms 51172 KB Output is correct
3 Correct 629 ms 65276 KB Output is correct
4 Correct 410 ms 50652 KB Output is correct
5 Correct 442 ms 50568 KB Output is correct
6 Correct 470 ms 52332 KB Output is correct
7 Correct 363 ms 50528 KB Output is correct
8 Correct 653 ms 64492 KB Output is correct
9 Correct 254 ms 51076 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 5 ms 6640 KB Output is correct
2 Correct 453 ms 49644 KB Output is correct
3 Correct 657 ms 64236 KB Output is correct
4 Correct 421 ms 49516 KB Output is correct
5 Correct 412 ms 49380 KB Output is correct
6 Correct 470 ms 51836 KB Output is correct
7 Correct 266 ms 49756 KB Output is correct
8 Correct 583 ms 58880 KB Output is correct
9 Correct 273 ms 49884 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 5 ms 6636 KB Output is correct
2 Correct 5 ms 6636 KB Output is correct
3 Correct 6 ms 6784 KB Output is correct
4 Correct 5 ms 6636 KB Output is correct
5 Correct 6 ms 6636 KB Output is correct
6 Correct 5 ms 6636 KB Output is correct
7 Correct 5 ms 6636 KB Output is correct
8 Correct 5 ms 6636 KB Output is correct
9 Correct 5 ms 6636 KB Output is correct
10 Correct 5 ms 6636 KB Output is correct
11 Correct 5 ms 6636 KB Output is correct
12 Correct 5 ms 6636 KB Output is correct
13 Correct 8 ms 7148 KB Output is correct
14 Correct 8 ms 7276 KB Output is correct
15 Correct 8 ms 7148 KB Output is correct
16 Correct 8 ms 7148 KB Output is correct
17 Correct 8 ms 7148 KB Output is correct
18 Correct 8 ms 7276 KB Output is correct
19 Correct 8 ms 7148 KB Output is correct
20 Correct 8 ms 7148 KB Output is correct
21 Correct 8 ms 7148 KB Output is correct
22 Correct 10 ms 7148 KB Output is correct
23 Correct 9 ms 7148 KB Output is correct
24 Correct 7 ms 7148 KB Output is correct
25 Correct 8 ms 7276 KB Output is correct
26 Correct 9 ms 7276 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 5 ms 6636 KB Output is correct
2 Correct 454 ms 51172 KB Output is correct
3 Correct 629 ms 65276 KB Output is correct
4 Correct 410 ms 50652 KB Output is correct
5 Correct 442 ms 50568 KB Output is correct
6 Correct 470 ms 52332 KB Output is correct
7 Correct 363 ms 50528 KB Output is correct
8 Correct 653 ms 64492 KB Output is correct
9 Correct 254 ms 51076 KB Output is correct
10 Correct 5 ms 6640 KB Output is correct
11 Correct 453 ms 49644 KB Output is correct
12 Correct 657 ms 64236 KB Output is correct
13 Correct 421 ms 49516 KB Output is correct
14 Correct 412 ms 49380 KB Output is correct
15 Correct 470 ms 51836 KB Output is correct
16 Correct 266 ms 49756 KB Output is correct
17 Correct 583 ms 58880 KB Output is correct
18 Correct 273 ms 49884 KB Output is correct
19 Correct 5 ms 6636 KB Output is correct
20 Incorrect 458 ms 49388 KB Output isn't correct
21 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 5 ms 6636 KB Output is correct
2 Correct 5 ms 6636 KB Output is correct
3 Correct 6 ms 6784 KB Output is correct
4 Correct 5 ms 6636 KB Output is correct
5 Correct 6 ms 6636 KB Output is correct
6 Correct 5 ms 6636 KB Output is correct
7 Correct 5 ms 6636 KB Output is correct
8 Correct 5 ms 6636 KB Output is correct
9 Correct 5 ms 6636 KB Output is correct
10 Correct 5 ms 6636 KB Output is correct
11 Correct 5 ms 6636 KB Output is correct
12 Correct 5 ms 6636 KB Output is correct
13 Correct 454 ms 51172 KB Output is correct
14 Correct 629 ms 65276 KB Output is correct
15 Correct 410 ms 50652 KB Output is correct
16 Correct 442 ms 50568 KB Output is correct
17 Correct 470 ms 52332 KB Output is correct
18 Correct 363 ms 50528 KB Output is correct
19 Correct 653 ms 64492 KB Output is correct
20 Correct 254 ms 51076 KB Output is correct
21 Correct 5 ms 6640 KB Output is correct
22 Correct 453 ms 49644 KB Output is correct
23 Correct 657 ms 64236 KB Output is correct
24 Correct 421 ms 49516 KB Output is correct
25 Correct 412 ms 49380 KB Output is correct
26 Correct 470 ms 51836 KB Output is correct
27 Correct 266 ms 49756 KB Output is correct
28 Correct 583 ms 58880 KB Output is correct
29 Correct 273 ms 49884 KB Output is correct
30 Correct 5 ms 6636 KB Output is correct
31 Correct 8 ms 7148 KB Output is correct
32 Correct 8 ms 7276 KB Output is correct
33 Correct 8 ms 7148 KB Output is correct
34 Correct 8 ms 7148 KB Output is correct
35 Correct 8 ms 7148 KB Output is correct
36 Correct 8 ms 7276 KB Output is correct
37 Correct 8 ms 7148 KB Output is correct
38 Correct 8 ms 7148 KB Output is correct
39 Correct 8 ms 7148 KB Output is correct
40 Correct 10 ms 7148 KB Output is correct
41 Correct 9 ms 7148 KB Output is correct
42 Correct 7 ms 7148 KB Output is correct
43 Correct 8 ms 7276 KB Output is correct
44 Correct 9 ms 7276 KB Output is correct
45 Correct 5 ms 6636 KB Output is correct
46 Incorrect 458 ms 49388 KB Output isn't correct
47 Halted 0 ms 0 KB -