Submission #381804

# Submission time Handle Problem Language Result Execution time Memory
381804 2021-03-26T00:44:22 Z ignaciocanta Gondola (IOI14_gondola) C++14
100 / 100
97 ms 13284 KB
#include <bits/stdc++.h>
#include "gondola.h"
 
using namespace std;
 
using tint = long long;
using ld = long double;
 
#define FOR(i,a,b) for (int i = (a); i < (b); ++i)
#define F0R(i,a) FOR(i,0,a)
#define ROF(i,a,b) for (int i = (b)-1; i >= (a); --i)
#define R0F(i,a) ROF(i,0,a)
#define trav(a,x) for (auto& a: x)
 
using pi = pair<int,int>;
using pl = pair<tint,tint>;
using vi = vector<int>;
using vpi = vector<pi>;
using vpl = vector<pl>;
using vvi = vector<vi>;
using vl = vector<tint>;
using vb = vector<bool>;
 
#define pb push_back
#define pf push_front
#define rsz resize
#define all(x) begin(x), end(x)
#define rall(x) x.rbegin(), x.rend() 
#define sz(x) (int)(x).size()
#define ins insert
 
#define f first
#define s second
#define mp make_pair
 
#define DBG(x) cerr << #x << " = " << x << endl;
 
const int MOD = 1e9+9; //change this
const tint mod = 998244353;
const int MX = 5005;
const tint INF = 1e18; 
const int inf = 2e9;
const ld PI = acos(ld(-1)); 
const ld eps = 1e-5;
 
const int dx[4] = {1, -1, 0, 0};
const int dy[4] = {0, 0, 1, -1};
 
template<class T> void remDup(vector<T> &v){ 
    sort(all(v)); v.erase(unique(all(v)),end(v));
}
 
template<class T> bool ckmin(T& a, const T& b) {
    return b < a ? a = b, 1 : 0; 
} 
template<class T> bool ckmax(T& a, const T& b) {
    return a < b ? a = b, 1 : 0; 
}
 
bool valid(int x, int y, int n, int m){
    return (0<=x && x<n && 0<=y && y<m);
}
 
int cdiv(int a, int b) { return a/b+((a^b)>0&&a%b); } //redondea p arriba
int fdiv(int a, int b) { return a/b-((a^b)<0&&a%b); } //redondea p abajo
 
void NACHO(string name = ""){
    ios_base::sync_with_stdio(0); cin.tie(0);
    if(sz(name)){
        freopen((name+".in").c_str(), "r", stdin);
        freopen((name+".out").c_str(), "w", stdout);
    }
}

int valid(int n, int b[])
{
	// si algun numero aparece dos veces, no se puede.
	// si hay dos numeros <= n (no se cambiaron), hay
	// que chequear que sean validos
	// si son todos >= n o todos excepto 1, no hay forma de verificar nada.
	vi id (n);
	vi a (n);
	F0R(i, n) a[i] = b[i];
	F0R(i, n) id[i] = i+1;
	set<int> c;
	F0R(i, n){
		if(c.count(a[i])) return 0;
		c.ins(a[i]);
	}
	int pos = -1;
	F0R(i, n) if(a[i] <= n) pos = i;
	if(pos == -1) return 1;
	rotate(id.begin(), id.begin()+a[pos]-1, id.end());
    rotate(a.begin(), a.begin()+pos, a.end());
	F0R(i, n) if(a[i] <= n && a[i] != id[i]) return 0;
	return 1;
}

//----------------------

int replacement(int n, int b[], int replacementSeq[])
{
	bool allG = 1;
	vi id (n);
	vi a (n);
	F0R(i, n) a[i] = b[i];
	F0R(i, n) id[i] = i+1;
	F0R(i, n) if(a[i] <= n) allG = 0;
	vi c (n);
	F0R(i, n) c[i] = a[i];
	if(allG){
		F0R(i, n) a[i] = i+1;
	}
	// uso el pivot para saber que gondola cambiada se corresponde
	// con que gondola original
	int pos;
	F0R(i, n) if(a[i] <= n) pos = i;
	rotate(id.begin(), id.begin()+a[pos]-1, id.end());
    rotate(a.begin(), a.begin()+pos, a.end());
    rotate(c.begin(), c.begin()+pos, c.end());
	vpi g;
	if(allG) F0R(i, n) a[i] = c[i];
	F0R(i, n){
		if(a[i] > n) g.pb(mp(a[i], i));
	}
	if(sz(g) == 0) return 0;
	sort(all(g));
	int ind = 0;
	set<int> av;
	FOR(i, n+1, 250005) av.ins(i);
	F0R(i, n) if(a[i] > n) av.erase(a[i]);
	F0R(i, sz(g)){
		int cur = id[g[i].s];
		while(cur < g[i].f){
			replacementSeq[ind] = cur;
			cur = *av.begin();
			av.erase(*av.begin());
			++ind;
		}
		av.ins(cur);
	}
	return ind;
}

//----------------------

struct mi {
 	int v; explicit operator int() const { return v; } 
	mi() { v = 0; }
	mi(tint _v):v(_v%MOD) { v += (v<0)*MOD; }
};
mi& operator+=(mi& a, mi b) { 
	if ((a.v += b.v) >= MOD) a.v -= MOD; 
	return a; }
mi& operator-=(mi& a, mi b) { 
	if ((a.v -= b.v) < 0) a.v += MOD; 
	return a; }
mi operator+(mi a, mi b) { return a += b; }
mi operator-(mi a, mi b) { return a -= b; }
mi operator*(mi a, mi b) { return mi((tint)a.v*b.v); }
mi& operator*=(mi& a, mi b) { return a = a*b; }
mi pow(mi a, tint p) { assert(p >= 0); // asserts are important! 
	return p==0?1:pow(a*a,p/2)*(p&1?a:1); }

int countReplacement(int n, int b[])
{
	if(!valid(n, b)) return 0;
	// sea maxi el maximo numero de gondola
	// claramente, tengo que insertar
	// todas las gondolas entre [n+1;maxi] para
	// llegar a maxi.
	// ahora, cuantas formas tengo de poner la gondola x?
	// puedo ponerla en la cantidad de lugares cuya gondola final
	// es mayor a x.
	// sin embargo, si vas de n+1 a maxi es a lo sumo 1e9, por lo cual esto 
	// no es viable.
	// lo que hay que notar es lo siguiente.
	// supongamos que tenemos ... ... ... 12 29 36
	// para todos los numeros entre [12;28], la respuesta es 2.
	// por lo tanto, no hace falta iterar poor todos ellos
	// ya que su respuesta es la misma (podemos hacer 2^(29-12).
	bool allG = 1;
	F0R(i, n) if(b[i] <= n) allG = 0;
	vi a;
	F0R(i, n){
		if(b[i] > n) a.pb(b[i]);
	}
	a.pb(n);
	sort(all(a));
	mi ret = 1;
	FOR(i, 1, sz(a)){
		ret *=  pow(mi(sz(a)-i), a[i]-a[i-1]-1);
		// resto 1 pq no cuento a a[i] ya que este tiene un lugar unico
		// al que ir.
	}
	if(allG) ret *= n;
	return int(ret);
}

Compilation message

gondola.cpp: In function 'void NACHO(std::string)':
gondola.cpp:70:16: warning: ignoring return value of 'FILE* freopen(const char*, const char*, FILE*)', declared with attribute warn_unused_result [-Wunused-result]
   70 |         freopen((name+".in").c_str(), "r", stdin);
      |         ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
gondola.cpp:71:16: warning: ignoring return value of 'FILE* freopen(const char*, const char*, FILE*)', declared with attribute warn_unused_result [-Wunused-result]
   71 |         freopen((name+".out").c_str(), "w", stdout);
      |         ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
gondola.cpp: In function 'int replacement(int, int*, int*)':
gondola.cpp:118:37: warning: 'pos' may be used uninitialized in this function [-Wmaybe-uninitialized]
  118 |  rotate(id.begin(), id.begin()+a[pos]-1, id.end());
      |                                     ^
# Verdict Execution time Memory Grader output
1 Correct 2 ms 364 KB Output is correct
2 Correct 1 ms 364 KB Output is correct
3 Correct 1 ms 364 KB Output is correct
4 Correct 1 ms 364 KB Output is correct
5 Correct 1 ms 364 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 364 KB Output is correct
2 Correct 1 ms 364 KB Output is correct
3 Correct 1 ms 364 KB Output is correct
4 Correct 1 ms 364 KB Output is correct
5 Correct 1 ms 364 KB Output is correct
6 Correct 14 ms 2540 KB Output is correct
7 Correct 12 ms 1388 KB Output is correct
8 Correct 30 ms 4588 KB Output is correct
9 Correct 9 ms 1644 KB Output is correct
10 Correct 38 ms 5356 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 364 KB Output is correct
2 Correct 1 ms 364 KB Output is correct
3 Correct 1 ms 364 KB Output is correct
4 Correct 1 ms 364 KB Output is correct
5 Correct 1 ms 364 KB Output is correct
6 Correct 15 ms 2540 KB Output is correct
7 Correct 12 ms 1388 KB Output is correct
8 Correct 30 ms 4460 KB Output is correct
9 Correct 9 ms 1644 KB Output is correct
10 Correct 35 ms 5228 KB Output is correct
11 Correct 1 ms 364 KB Output is correct
12 Correct 1 ms 364 KB Output is correct
13 Correct 20 ms 2412 KB Output is correct
14 Correct 1 ms 364 KB Output is correct
15 Correct 49 ms 5356 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 55 ms 12100 KB Output is correct
2 Correct 54 ms 12012 KB Output is correct
3 Correct 56 ms 12012 KB Output is correct
4 Correct 1 ms 364 KB Output is correct
5 Correct 56 ms 12012 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 56 ms 12012 KB Output is correct
2 Correct 54 ms 12140 KB Output is correct
3 Correct 55 ms 12012 KB Output is correct
4 Correct 1 ms 364 KB Output is correct
5 Correct 56 ms 12060 KB Output is correct
6 Correct 54 ms 12068 KB Output is correct
7 Correct 55 ms 12012 KB Output is correct
8 Correct 56 ms 12140 KB Output is correct
9 Correct 57 ms 12140 KB Output is correct
10 Correct 56 ms 12140 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 55 ms 12012 KB Output is correct
2 Correct 54 ms 12012 KB Output is correct
3 Correct 57 ms 12012 KB Output is correct
4 Correct 1 ms 364 KB Output is correct
5 Correct 56 ms 12012 KB Output is correct
6 Correct 54 ms 12012 KB Output is correct
7 Correct 54 ms 12012 KB Output is correct
8 Correct 55 ms 12140 KB Output is correct
9 Correct 60 ms 12140 KB Output is correct
10 Correct 56 ms 12140 KB Output is correct
11 Correct 11 ms 1516 KB Output is correct
12 Correct 14 ms 1772 KB Output is correct
13 Correct 85 ms 11496 KB Output is correct
14 Correct 12 ms 1516 KB Output is correct
15 Correct 97 ms 13284 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 364 KB Output is correct
2 Correct 1 ms 364 KB Output is correct
3 Correct 1 ms 364 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 364 KB Output is correct
2 Correct 1 ms 364 KB Output is correct
3 Correct 1 ms 364 KB Output is correct
4 Correct 1 ms 364 KB Output is correct
5 Correct 1 ms 364 KB Output is correct
6 Correct 1 ms 364 KB Output is correct
7 Correct 1 ms 364 KB Output is correct
8 Correct 1 ms 364 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 364 KB Output is correct
2 Correct 1 ms 364 KB Output is correct
3 Correct 2 ms 364 KB Output is correct
4 Correct 1 ms 384 KB Output is correct
5 Correct 1 ms 364 KB Output is correct
6 Correct 1 ms 364 KB Output is correct
7 Correct 1 ms 364 KB Output is correct
8 Correct 1 ms 364 KB Output is correct
9 Correct 48 ms 4588 KB Output is correct
10 Correct 37 ms 3948 KB Output is correct
11 Correct 14 ms 1644 KB Output is correct
12 Correct 18 ms 1900 KB Output is correct
13 Correct 4 ms 748 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 364 KB Output is correct
2 Correct 1 ms 364 KB Output is correct
3 Correct 1 ms 364 KB Output is correct
4 Correct 1 ms 364 KB Output is correct
5 Correct 1 ms 364 KB Output is correct
6 Correct 1 ms 364 KB Output is correct
7 Correct 1 ms 364 KB Output is correct
8 Correct 1 ms 364 KB Output is correct
9 Correct 48 ms 4588 KB Output is correct
10 Correct 38 ms 3948 KB Output is correct
11 Correct 14 ms 1644 KB Output is correct
12 Correct 17 ms 1900 KB Output is correct
13 Correct 5 ms 748 KB Output is correct
14 Correct 60 ms 5228 KB Output is correct
15 Correct 72 ms 6764 KB Output is correct
16 Correct 12 ms 1516 KB Output is correct
17 Correct 45 ms 4716 KB Output is correct
18 Correct 26 ms 2796 KB Output is correct