Submission #377766

#TimeUsernameProblemLanguageResultExecution timeMemory
377766ecnerwalaExam (eJOI20_exam)C++17
100 / 100
66 ms8464 KiB
#include <bits/stdc++.h> int main() { using namespace std; ios_base::sync_with_stdio(false), cin.tie(nullptr); int N; cin >> N; vector<int> A(N); for (auto& a : A) cin >> a; vector<int> B(N); for (auto& b : B) cin >> b; vector<array<int, 2>> match(N, array<int, 2>{-1, -1}); for (int z = 0; z < 2; z++) { unordered_map<int, int> in_stack; vector<int> stk; stk.reserve(N); for (int j = 0; j < N; j++) { int i = z ? N-1-j : j; while (!stk.empty() && stk.back() <= A[i]) { in_stack.erase(stk.back()); stk.pop_back(); } stk.push_back(A[i]); in_stack[A[i]] = i; if (in_stack.count(B[i])) { match[i][z] = in_stack[B[i]]; } } } vector<int> V; V.reserve(2*N); for (int i = 0; i < N; i++) { // match[i][0] is to the left, match[i][1] is to the right // We can just process match[i][1] first and the match[i][0] if (match[i][1] != -1) { V.push_back(match[i][1]); } if (match[i][0] != -1 && match[i][0] != match[i][1]) { V.push_back(match[i][0]); } } // find the maximum (weakly) increasing subsequence of V vector<int> best; best.reserve(V.size()); for (int v : V) { int mi = -1; int ma = int(best.size()); while (ma - mi > 1) { int md = (mi + ma) / 2; if (v >= best[md]) mi = md; else ma = md; } if (ma == int(best.size())) best.push_back(v); else best[ma] = v; } cout << best.size() << '\n'; return 0; } // 1. We can do just ops with 2 people at a time. // // 2. People can only increase, so we should do smaller values first. // // 3. If we consider the smallest B which passes, it has to come from someone's // original score; that original score has to "flow" from the original place to // the final place, without crossing anyone bigger in the middle. // Afterwards, no bigger ops can cross this B, which means that we can solve // the left and right halves separately. // // This gives O(N^3) dp: for each interval dp[interval] = max_{choice of smallest B} dp[left half] + dp[right half] + 1 // // // Consider the maximum A; that value never decreases, so smaller values never // cross; Then, we should do something on the left and something on the right // then expand the A some amount left and right; there's an interval of the // smaller stuff that's left exposed // // // Each B either comes from the leftmost equal A, comes from the rightmost equal A, or is impossible // What you need, as you sweep from left to right // A1 <= A2
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...