Submission #370159

# Submission time Handle Problem Language Result Execution time Memory
370159 2021-02-23T12:54:57 Z ACmachine Palindrome-Free Numbers (BOI13_numbers) C++17
98.75 / 100
2 ms 748 KB
#include <bits/stdc++.h>
using namespace std;

#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace __gnu_pbds;

template<typename T> using ordered_set = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
template<typename T, typename U> using ordered_map = tree<T, U, less<T>, rb_tree_tag, tree_order_statistics_node_update>;

typedef long long ll;
typedef long double ld;
typedef double db;
typedef string str;

typedef pair<int,int> pii;
typedef pair<ll,ll> pll;

typedef vector<int> vi;
typedef vector<ll> vll;
typedef vector<pii> vpii;
typedef vector<pll> vpll;
typedef vector<str> vstr;

#define FOR(i,j,k,in) for(int i=(j); i < (k);i+=in)
#define FORD(i,j,k,in) for(int i=(j); i >=(k);i-=in)
#define REP(i,b) FOR(i,0,b,1)
#define REPD(i,b) FORD(i,b,0,1)
#define pb push_back 
#define mp make_pair
#define ff first
#define ss second
#define all(x) begin(x), end(x)
#define rsz resize 
#define MANY_TESTS int tcase; cin >> tcase; while(tcase--)
	
const double EPS = 1e-9;
const int MOD = 1e9+7; // 998244353;
const ll INFF = 1e18;
const int INF = 1e9;
const ld PI = acos((ld)-1);
const vi dy = {1, 0, -1, 0, -1, 1, 1, -1};
const vi dx = {0, 1, 0, -1, -1, 1, -1, 1};

#ifdef DEBUG
#define DBG if(1)
#else
#define DBG if(0)
#endif

#define dbg(x) cout << "(" << #x << " : " << x << ")" << endl;
// ostreams
template <class T, class U>
ostream& operator<<(ostream& out, const pair<T, U> &par) {out << "[" << par.first << ";" << par.second << "]"; return out;}
template <class T>
ostream& operator<<(ostream& out, const set<T> &cont) { out << "{"; for( const auto &x:cont) out << x << ", "; out << "}"; return out; }
template <class T, class U>
ostream& operator<<(ostream& out, const map<T, U> &cont) {out << "{"; for( const auto &x:cont) out << x << ", "; out << "}"; return out; }
template<class T>
ostream& operator<<(ostream& out, const vector<T> &v){ out << "[";  REP(i, v.size()) out << v[i] << ", ";  out << "]"; return out;}
// istreams
template<class T>
istream& operator>>(istream& in, vector<T> &v){ for(auto &x : v) in >> x; return in; }
template<class T, class U>
istream& operator>>(istream& in, pair<T, U> &p){ in >> p.ff >> p.ss; return in; }
//searches
template<typename T, typename U>
T bsl(T lo, T hi, U f){ hi++; T mid; while(lo < hi){ mid = (lo + hi)/2; f(mid) ? hi = mid : lo = mid+1; } return lo; }
template<typename U>
double bsld(double lo, double hi, U f, double p = 1e-9){ int r = 3 + (int)log2((hi - lo)/p); double mid; while(r--){ mid = (lo + hi)/2; f(mid) ? hi = mid : lo = mid; } return (lo + hi)/2; }
template<typename T, typename U>
T bsh(T lo, T hi, U f){ lo--; T mid; while(lo < hi){ mid = (lo + hi + 1)/2; f(mid) ? lo = mid : hi = mid-1; } return lo; }
template<typename U>
double bshd(double lo, double hi, U f, double p = 1e-9){ int r = 3+(int)log2((hi - lo)/p); double mid; while(r--){ mid = (lo + hi)/2; f(mid) ? lo = mid : hi = mid; } return (lo + hi)/2; }
// some more utility functions
template<typename T>
pair<T, int> get_min(vector<T> &v){ typename vector<T> :: iterator it = min_element(v.begin(), v.end()); return mp(*it, it - v.begin());}
template<typename T>
pair<T, int> get_max(vector<T> &v){ typename vector<T> :: iterator it = max_element(v.begin(), v.end()); return mp(*it, it - v.begin());}        
template<typename T> bool ckmin(T& a, const T& b){return b < a ? a = b , true : false;}
template<typename T> bool ckmax(T& a, const T& b){return b > a ? a = b, true : false;}

    
int main(){
 	ios_base::sync_with_stdio(false);
 	cin.tie(NULL); cout.tie(NULL);
	ll a, b;
    cin >> a >> b;
    vector<int> dig;
    auto prep = [&](ll n){
        dig.clear();
        while(n){
            dig.pb(n % 10);
            n /= 10;
        } 
        reverse(all(dig));
    };
    vector<vector<vector<vector<ll>>>> dp(20, vector<vector<vector<ll>>>(11, vector<vector<ll>>(11, vector<ll>(2, 0))));
    function<ll(int, int, int, int, bool)> dfs = [&](int curr_len, int limit_len, int prev1, int prev2, bool placed_smaller){
        if(curr_len == limit_len) return 1ll;
        if(dp[curr_len][prev1][prev2][placed_smaller] != 0)
            return dp[curr_len][prev1][prev2][placed_smaller] - 1ll;
        dp[curr_len][prev1][prev2][placed_smaller]++;
        int lim = (placed_smaller ? 9 : dig[curr_len]);
        FOR(d, 0, lim + 1, 1){
            if(d == prev1 || d == prev2) continue;
            int tmp = d; 
            if(prev1 == 10 && d == 0) tmp = 10;
            dp[curr_len][prev1][prev2][placed_smaller] += dfs(curr_len + 1, limit_len, tmp, prev1, (placed_smaller || d < dig[curr_len]));
        }
        return dp[curr_len][prev1][prev2][placed_smaller] - 1ll;
    };
	ll res = 0;
    prep(b); res += dfs(0, to_string(b).length(), 10, 10, false);
    REP(i, 20) REP(j, 11) REP(k, 11) REP(g, 2) dp[i][j][k][g] = 0ll;
    prep(a - 1); 
    ll tosub = dfs(0, to_string(a - 1).length(), 10, 10, false); 
    if(a == 1) tosub = 1;
    cout << res - tosub << "\n";
    return 0;
}
# Verdict Execution time Memory Grader output
1 Correct 1 ms 492 KB Output is correct
2 Correct 1 ms 492 KB Output is correct
3 Correct 1 ms 492 KB Output is correct
4 Correct 1 ms 492 KB Output is correct
5 Correct 1 ms 492 KB Output is correct
6 Correct 1 ms 492 KB Output is correct
7 Correct 1 ms 492 KB Output is correct
8 Correct 1 ms 492 KB Output is correct
9 Correct 1 ms 492 KB Output is correct
10 Correct 1 ms 492 KB Output is correct
11 Correct 1 ms 492 KB Output is correct
12 Correct 1 ms 492 KB Output is correct
13 Correct 1 ms 492 KB Output is correct
14 Correct 1 ms 492 KB Output is correct
15 Correct 1 ms 492 KB Output is correct
16 Correct 1 ms 492 KB Output is correct
17 Correct 1 ms 492 KB Output is correct
18 Runtime error 1 ms 748 KB Execution killed with signal 11
19 Correct 1 ms 492 KB Output is correct
20 Correct 1 ms 492 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 492 KB Output is correct
2 Correct 1 ms 492 KB Output is correct
3 Correct 1 ms 492 KB Output is correct
4 Correct 1 ms 492 KB Output is correct
5 Correct 1 ms 492 KB Output is correct
6 Correct 1 ms 492 KB Output is correct
7 Correct 1 ms 492 KB Output is correct
8 Correct 1 ms 492 KB Output is correct
9 Correct 1 ms 492 KB Output is correct
10 Correct 1 ms 492 KB Output is correct
11 Correct 1 ms 492 KB Output is correct
12 Correct 1 ms 492 KB Output is correct
13 Correct 1 ms 492 KB Output is correct
14 Correct 1 ms 492 KB Output is correct
15 Correct 1 ms 492 KB Output is correct
16 Correct 1 ms 492 KB Output is correct
17 Correct 1 ms 492 KB Output is correct
18 Correct 1 ms 492 KB Output is correct
19 Correct 1 ms 492 KB Output is correct
20 Correct 1 ms 492 KB Output is correct
21 Correct 1 ms 492 KB Output is correct
22 Correct 1 ms 492 KB Output is correct
23 Correct 1 ms 492 KB Output is correct
24 Correct 1 ms 492 KB Output is correct
25 Correct 1 ms 492 KB Output is correct
26 Correct 1 ms 492 KB Output is correct
27 Correct 1 ms 492 KB Output is correct
28 Correct 1 ms 492 KB Output is correct
29 Correct 1 ms 492 KB Output is correct
30 Correct 1 ms 492 KB Output is correct
31 Correct 1 ms 492 KB Output is correct
32 Correct 1 ms 492 KB Output is correct
33 Correct 1 ms 492 KB Output is correct
34 Correct 1 ms 640 KB Output is correct
35 Correct 1 ms 492 KB Output is correct
36 Correct 1 ms 492 KB Output is correct
37 Correct 1 ms 492 KB Output is correct
38 Correct 1 ms 492 KB Output is correct
39 Correct 1 ms 492 KB Output is correct
40 Correct 1 ms 492 KB Output is correct
41 Correct 1 ms 492 KB Output is correct
42 Correct 1 ms 492 KB Output is correct
43 Correct 1 ms 492 KB Output is correct
44 Correct 2 ms 492 KB Output is correct
45 Correct 1 ms 492 KB Output is correct