Submission #369452

# Submission time Handle Problem Language Result Execution time Memory
369452 2021-02-21T17:13:09 Z ACmachine Tracks in the Snow (BOI13_tracks) C++17
100 / 100
939 ms 210292 KB
#include <bits/stdc++.h>
using namespace std;

#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace __gnu_pbds;

template<typename T> using ordered_set = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
template<typename T, typename U> using ordered_map = tree<T, U, less<T>, rb_tree_tag, tree_order_statistics_node_update>;

typedef long long ll;
typedef long double ld;
typedef double db;
typedef string str;

typedef pair<int,int> pii;
typedef pair<ll,ll> pll;

typedef vector<int> vi;
typedef vector<ll> vll;
typedef vector<pii> vpii;
typedef vector<pll> vpll;
typedef vector<str> vstr;

#define FOR(i,j,k,in) for(int i=(j); i < (k);i+=in)
#define FORD(i,j,k,in) for(int i=(j); i >=(k);i-=in)
#define REP(i,b) FOR(i,0,b,1)
#define REPD(i,b) FORD(i,b,0,1)
#define pb push_back 
#define mp make_pair
#define ff first
#define ss second
#define all(x) begin(x), end(x)
#define rsz resize 
#define MANY_TESTS int tcase; cin >> tcase; while(tcase--)
	
const double EPS = 1e-9;
const int MOD = 1e9+7; // 998244353;
const ll INFF = 1e18;
const int INF = 1e9;
const ld PI = acos((ld)-1);
const vi dy = {1, 0, -1, 0, -1, 1, 1, -1};
const vi dx = {0, 1, 0, -1, -1, 1, -1, 1};

#ifdef DEBUG
#define DBG if(1)
#else
#define DBG if(0)
#endif

#define dbg(x) cout << "(" << #x << " : " << x << ")" << endl;
// ostreams
template <class T, class U>
ostream& operator<<(ostream& out, const pair<T, U> &par) {out << "[" << par.first << ";" << par.second << "]"; return out;}
template <class T>
ostream& operator<<(ostream& out, const set<T> &cont) { out << "{"; for( const auto &x:cont) out << x << ", "; out << "}"; return out; }
template <class T, class U>
ostream& operator<<(ostream& out, const map<T, U> &cont) {out << "{"; for( const auto &x:cont) out << x << ", "; out << "}"; return out; }
template<class T>
ostream& operator<<(ostream& out, const vector<T> &v){ out << "[";  REP(i, v.size()) out << v[i] << ", ";  out << "]"; return out;}
// istreams
template<class T>
istream& operator>>(istream& in, vector<T> &v){ for(auto &x : v) in >> x; return in; }
template<class T, class U>
istream& operator>>(istream& in, pair<T, U> &p){ in >> p.ff >> p.ss; return in; }
//searches
template<typename T, typename U>
T bsl(T lo, T hi, U f){ hi++; T mid; while(lo < hi){ mid = (lo + hi)/2; f(mid) ? hi = mid : lo = mid+1; } return lo; }
template<typename U>
double bsld(double lo, double hi, U f, double p = 1e-9){ int r = 3 + (int)log2((hi - lo)/p); double mid; while(r--){ mid = (lo + hi)/2; f(mid) ? hi = mid : lo = mid; } return (lo + hi)/2; }
template<typename T, typename U>
T bsh(T lo, T hi, U f){ lo--; T mid; while(lo < hi){ mid = (lo + hi + 1)/2; f(mid) ? lo = mid : hi = mid-1; } return lo; }
template<typename U>
double bshd(double lo, double hi, U f, double p = 1e-9){ int r = 3+(int)log2((hi - lo)/p); double mid; while(r--){ mid = (lo + hi)/2; f(mid) ? lo = mid : hi = mid; } return (lo + hi)/2; }
// some more utility functions
template<typename T>
pair<T, int> get_min(vector<T> &v){ typename vector<T> :: iterator it = min_element(v.begin(), v.end()); return mp(*it, it - v.begin());}
template<typename T>
pair<T, int> get_max(vector<T> &v){ typename vector<T> :: iterator it = max_element(v.begin(), v.end()); return mp(*it, it - v.begin());}        
template<typename T> bool ckmin(T& a, const T& b){return b < a ? a = b , true : false;}
template<typename T> bool ckmax(T& a, const T& b){return b > a ? a = b, true : false;}

    
int main(){
 	ios_base::sync_with_stdio(false);
 	cin.tie(NULL); cout.tie(NULL);
	int h, w;
    cin >> h >> w;
    vector<string> grid(h);
    cin >> grid;
    int ans = 0;
    deque<array<int, 3>> dq;
    vector<vector<int>> dist(h, vector<int>(w, -1));
    dq.push_back({0, 0, 1});
    while(!dq.empty()){
        auto v = dq.front();
        dq.pop_front();
        if(dist[v[0]][v[1]] != -1) continue;
        dist[v[0]][v[1]] = v[2];
        ans = max(ans, v[2]);
        REP(sm, 4){
            int ny = v[0] + dy[sm];
            int nx = v[1] + dx[sm];
            if(ny < 0 || ny >= h || nx < 0 || nx >= w || grid[ny][nx] == '.') continue;
            if(dist[ny][nx] == -1){
                if(grid[ny][nx] == grid[v[0]][v[1]]){
                    dq.push_front({ny, nx, v[2]});
                }
                else{
                    dq.push_back({ny, nx, v[2] + 1});
                }
            }
        } 
    }
	cout << ans << "\n";
    return 0;
}
# Verdict Execution time Memory Grader output
1 Correct 17 ms 1772 KB Output is correct
2 Correct 1 ms 364 KB Output is correct
3 Correct 1 ms 364 KB Output is correct
4 Correct 8 ms 1644 KB Output is correct
5 Correct 2 ms 748 KB Output is correct
6 Correct 1 ms 364 KB Output is correct
7 Correct 1 ms 364 KB Output is correct
8 Correct 1 ms 364 KB Output is correct
9 Correct 1 ms 364 KB Output is correct
10 Correct 3 ms 620 KB Output is correct
11 Correct 3 ms 748 KB Output is correct
12 Correct 7 ms 876 KB Output is correct
13 Correct 2 ms 748 KB Output is correct
14 Correct 2 ms 748 KB Output is correct
15 Correct 14 ms 1644 KB Output is correct
16 Correct 22 ms 1772 KB Output is correct
17 Correct 9 ms 1516 KB Output is correct
18 Correct 9 ms 1644 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 748 KB Output is correct
2 Correct 54 ms 8172 KB Output is correct
3 Correct 244 ms 81004 KB Output is correct
4 Correct 67 ms 19052 KB Output is correct
5 Correct 172 ms 45676 KB Output is correct
6 Correct 939 ms 117968 KB Output is correct
7 Correct 2 ms 748 KB Output is correct
8 Correct 2 ms 748 KB Output is correct
9 Correct 2 ms 748 KB Output is correct
10 Correct 1 ms 492 KB Output is correct
11 Correct 2 ms 748 KB Output is correct
12 Correct 1 ms 492 KB Output is correct
13 Correct 51 ms 8172 KB Output is correct
14 Correct 28 ms 4972 KB Output is correct
15 Correct 18 ms 5356 KB Output is correct
16 Correct 32 ms 3564 KB Output is correct
17 Correct 135 ms 20716 KB Output is correct
18 Correct 79 ms 20332 KB Output is correct
19 Correct 67 ms 19052 KB Output is correct
20 Correct 68 ms 17516 KB Output is correct
21 Correct 145 ms 47084 KB Output is correct
22 Correct 171 ms 45548 KB Output is correct
23 Correct 265 ms 39428 KB Output is correct
24 Correct 128 ms 45932 KB Output is correct
25 Correct 457 ms 81132 KB Output is correct
26 Correct 559 ms 210292 KB Output is correct
27 Correct 711 ms 159748 KB Output is correct
28 Correct 898 ms 117956 KB Output is correct
29 Correct 883 ms 115496 KB Output is correct
30 Correct 810 ms 135652 KB Output is correct
31 Correct 809 ms 53100 KB Output is correct
32 Correct 647 ms 150148 KB Output is correct