Submission #368235

#TimeUsernameProblemLanguageResultExecution timeMemory
368235rqiAsceticism (JOI18_asceticism)C++14
100 / 100
27 ms2816 KiB
#include <bits/stdc++.h> using namespace std; typedef long long ll; typedef long double ld; typedef double db; typedef string str; typedef pair<int,int> pi; typedef pair<ll,ll> pl; typedef pair<db,db> pd; typedef vector<int> vi; typedef vector<bool> vb; typedef vector<ll> vl; typedef vector<db> vd; typedef vector<str> vs; typedef vector<pi> vpi; typedef vector<pl> vpl; typedef vector<pd> vpd; #define mp make_pair #define f first #define s second #define sz(x) (int)(x).size() #define all(x) begin(x), end(x) #define rall(x) (x).rbegin(), (x).rend() #define sor(x) sort(all(x)) #define rsz resize #define ins insert #define ft front() #define bk back() #define pf push_front #define pb push_back #define eb emplace_back #define lb lower_bound #define ub upper_bound #define FOR(i,a,b) for (int i = (a); i < (b); ++i) #define F0R(i,a) FOR(i,0,a) #define ROF(i,a,b) for (int i = (b)-1; i >= (a); --i) #define R0F(i,a) ROF(i,0,a) #define trav(a,x) for (auto& a: x) const int MOD = 1e9+7; // 998244353; const int MX = 2e5+5; const ll INF = 1e18; const ld PI = acos((ld)-1); const int xd[4] = {1,0,-1,0}, yd[4] = {0,1,0,-1}; mt19937 rng((uint32_t)chrono::steady_clock::now().time_since_epoch().count()); template<class T> bool ckmin(T& a, const T& b) { return b < a ? a = b, 1 : 0; } template<class T> bool ckmax(T& a, const T& b) { return a < b ? a = b, 1 : 0; } constexpr int pct(int x) { return __builtin_popcount(x); } constexpr int bits(int x) { return 31-__builtin_clz(x); } // floor(log2(x)) ll cdiv(ll a, ll b) { return a/b+((a^b)>0&&a%b); } // divide a by b rounded up ll fdiv(ll a, ll b) { return a/b-((a^b)<0&&a%b); } // divide a by b rounded down ll half(ll x) { return fdiv(x,2); } template<class T, class U> T fstTrue(T lo, T hi, U f) { // note: if (lo+hi)/2 is used instead of half(lo+hi) then this will loop infinitely when lo=hi hi ++; assert(lo <= hi); // assuming f is increasing while (lo < hi) { // find first index such that f is true T mid = half(lo+hi); f(mid) ? hi = mid : lo = mid+1; } return lo; } template<class T, class U> T lstTrue(T lo, T hi, U f) { lo --; assert(lo <= hi); // assuming f is decreasing while (lo < hi) { // find first index such that f is true T mid = half(lo+hi+1); f(mid) ? lo = mid : hi = mid-1; } return lo; } template<class T> void remDup(vector<T>& v) { sort(all(v)); v.erase(unique(all(v)),end(v)); } // INPUT template<class A> void re(complex<A>& c); template<class A, class B> void re(pair<A,B>& p); template<class A> void re(vector<A>& v); template<class A, size_t SZ> void re(array<A,SZ>& a); template<class T> void re(T& x) { cin >> x; } void re(db& d) { str t; re(t); d = stod(t); } void re(ld& d) { str t; re(t); d = stold(t); } template<class H, class... T> void re(H& h, T&... t) { re(h); re(t...); } template<class A> void re(complex<A>& c) { A a,b; re(a,b); c = {a,b}; } template<class A, class B> void re(pair<A,B>& p) { re(p.f,p.s); } template<class A> void re(vector<A>& x) { trav(a,x) re(a); } template<class A, size_t SZ> void re(array<A,SZ>& x) { trav(a,x) re(a); } // TO_STRING #define ts to_string str ts(char c) { return str(1,c); } str ts(const char* s) { return (str)s; } str ts(str s) { return s; } str ts(bool b) { #ifdef LOCAL return b ? "true" : "false"; #else return ts((int)b); #endif } template<class A> str ts(complex<A> c) { stringstream ss; ss << c; return ss.str(); } str ts(vector<bool> v) { str res = "{"; F0R(i,sz(v)) res += char('0'+v[i]); res += "}"; return res; } template<size_t SZ> str ts(bitset<SZ> b) { str res = ""; F0R(i,SZ) res += char('0'+b[i]); return res; } template<class A, class B> str ts(pair<A,B> p); template<class T> str ts(T v) { // containers with begin(), end() #ifdef LOCAL bool fst = 1; str res = "{"; for (const auto& x: v) { if (!fst) res += ", "; fst = 0; res += ts(x); } res += "}"; return res; #else bool fst = 1; str res = ""; for (const auto& x: v) { if (!fst) res += " "; fst = 0; res += ts(x); } return res; #endif } template<class A, class B> str ts(pair<A,B> p) { #ifdef LOCAL return "("+ts(p.f)+", "+ts(p.s)+")"; #else return ts(p.f)+" "+ts(p.s); #endif } // OUTPUT template<class A> void pr(A x) { cout << ts(x); } template<class H, class... T> void pr(const H& h, const T&... t) { pr(h); pr(t...); } void ps() { pr("\n"); } // print w/ spaces template<class H, class... T> void ps(const H& h, const T&... t) { pr(h); if (sizeof...(t)) pr(" "); ps(t...); } // DEBUG void DBG() { cerr << "]" << endl; } template<class H, class... T> void DBG(H h, T... t) { cerr << ts(h); if (sizeof...(t)) cerr << ", "; DBG(t...); } #ifdef LOCAL // compile with -DLOCAL, chk -> fake assert #define dbg(...) cerr << "Line(" << __LINE__ << ") -> [" << #__VA_ARGS__ << "]: [", DBG(__VA_ARGS__) #define chk(...) if (!(__VA_ARGS__)) cerr << "Line(" << __LINE__ << ") -> function(" \ << __FUNCTION__ << ") -> CHK FAILED: (" << #__VA_ARGS__ << ")" << "\n", exit(0); #else #define dbg(...) 0 #define chk(...) 0 #endif // FILE I/O void setIn(str s) { freopen(s.c_str(),"r",stdin); } void setOut(str s) { freopen(s.c_str(),"w",stdout); } void unsyncIO() { cin.tie(0)->sync_with_stdio(0); } void setIO(str s = "") { unsyncIO(); // cin.exceptions(cin.failbit); // throws exception when do smth illegal // ex. try to read letter into int if (sz(s)) { setIn(s+".in"), setOut(s+".out"); } // for USACO } /** * Description: modular arithmetic operations * Source: * KACTL * https://codeforces.com/blog/entry/63903 * https://codeforces.com/contest/1261/submission/65632855 (tourist) * https://codeforces.com/contest/1264/submission/66344993 (ksun) * also see https://github.com/ecnerwala/cp-book/blob/master/src/modnum.hpp (ecnerwal) * Verification: * https://open.kattis.com/problems/modulararithmetic */ template<int MOD, int RT> struct mint { static const int mod = MOD; static constexpr mint rt() { return RT; } // primitive root for FFT int v; explicit operator int() const { return v; } // explicit -> don't silently convert to int mint() { v = 0; } mint(ll _v) { v = (-MOD < _v && _v < MOD) ? _v : _v % MOD; if (v < 0) v += MOD; } friend bool operator==(const mint& a, const mint& b) { return a.v == b.v; } friend bool operator!=(const mint& a, const mint& b) { return !(a == b); } friend bool operator<(const mint& a, const mint& b) { return a.v < b.v; } friend void re(mint& a) { ll x; re(x); a = mint(x); } friend str ts(mint a) { return ts(a.v); } mint& operator+=(const mint& m) { if ((v += m.v) >= MOD) v -= MOD; return *this; } mint& operator-=(const mint& m) { if ((v -= m.v) < 0) v += MOD; return *this; } mint& operator*=(const mint& m) { v = (ll)v*m.v%MOD; return *this; } mint& operator/=(const mint& m) { return (*this) *= inv(m); } friend mint pow(mint a, ll p) { mint ans = 1; assert(p >= 0); for (; p; p /= 2, a *= a) if (p&1) ans *= a; return ans; } friend mint inv(const mint& a) { assert(a.v != 0); return pow(a,MOD-2); } mint operator-() const { return mint(-v); } mint& operator++() { return *this += 1; } mint& operator--() { return *this -= 1; } friend mint operator+(mint a, const mint& b) { return a += b; } friend mint operator-(mint a, const mint& b) { return a -= b; } friend mint operator*(mint a, const mint& b) { return a *= b; } friend mint operator/(mint a, const mint& b) { return a /= b; } }; typedef mint<MOD,5> mi; // 5 is primitive root for both common mods typedef vector<mi> vmi; typedef pair<mi,mi> pmi; typedef vector<pmi> vpmi; /** * Description: pre-compute factorial mod inverses, * assumes $MOD$ is prime and $SZ < MOD$. * Time: O(SZ) * Source: KACTL * Verification: https://dmoj.ca/problem/tle17c4p5 */ vi invs, fac, ifac; // make sure to convert to LL before doing any multiplications ... void genFac(int SZ) { invs.rsz(SZ), fac.rsz(SZ), ifac.rsz(SZ); invs[1] = fac[0] = ifac[0] = 1; FOR(i,2,SZ) invs[i] = MOD-(ll)MOD/i*invs[MOD%i]%MOD; FOR(i,1,SZ) { fac[i] = (ll)fac[i-1]*i%MOD; ifac[i] = (ll)ifac[i-1]*invs[i]%MOD; } } ll comb(int a, int b) { if (a < b || b < 0) return 0; return (ll)fac[a]*ifac[b]%MOD*ifac[a-b]%MOD; } mi getEul(int n, int k){ mi ans = 0; for(int j = 0; j <= k; j++){ ans+=pow(mi(-1), j)*(pow(mi(k-j), n))*mi(comb(n+1, j)); } return ans; } int main() { setIO(); genFac(200005); int N, K; cin >> N >> K; mi ans = getEul(N, K); cout << ans.v << "\n"; // you should actually read the stuff at the bottom } /* stuff you should look for * int overflow, array bounds * special cases (n=1?) * do smth instead of nothing and stay organized * WRITE STUFF DOWN */

Compilation message (stderr)

asceticism.cpp: In function 'void setIn(str)':
asceticism.cpp:168:28: warning: ignoring return value of 'FILE* freopen(const char*, const char*, FILE*)', declared with attribute warn_unused_result [-Wunused-result]
  168 | void setIn(str s) { freopen(s.c_str(),"r",stdin); }
      |                     ~~~~~~~^~~~~~~~~~~~~~~~~~~~~
asceticism.cpp: In function 'void setOut(str)':
asceticism.cpp:169:29: warning: ignoring return value of 'FILE* freopen(const char*, const char*, FILE*)', declared with attribute warn_unused_result [-Wunused-result]
  169 | void setOut(str s) { freopen(s.c_str(),"w",stdout); }
      |                      ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...