Submission #368092

# Submission time Handle Problem Language Result Execution time Memory
368092 2021-02-19T13:31:59 Z ACmachine Cities (BOI16_cities) C++17
100 / 100
3844 ms 54480 KB
#include <bits/stdc++.h>
using namespace std;

#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace __gnu_pbds;

template<typename T> using ordered_set = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
template<typename T, typename U> using ordered_map = tree<T, U, less<T>, rb_tree_tag, tree_order_statistics_node_update>;

typedef long long ll;
typedef long double ld;
typedef double db;
typedef string str;

typedef pair<int,int> pii;
typedef pair<ll,ll> pll;

typedef vector<int> vi;
typedef vector<ll> vll;
typedef vector<pii> vpii;
typedef vector<pll> vpll;
typedef vector<str> vstr;

#define FOR(i,j,k,in) for(int i=(j); i < (k);i+=in)
#define FORD(i,j,k,in) for(int i=(j); i >=(k);i-=in)
#define REP(i,b) FOR(i,0,b,1)
#define REPD(i,b) FORD(i,b,0,1)
#define pb push_back 
#define mp make_pair
#define ff first
#define ss second
#define all(x) begin(x), end(x)
#define rsz resize 
#define MANY_TESTS int tcase; cin >> tcase; while(tcase--)
	
const double EPS = 1e-9;
const int MOD = 1e9+7; // 998244353;
const ll INFF = 1e18;
const int INF = 1e9;
const ld PI = acos((ld)-1);
const vi dy = {1, 0, -1, 0, -1, 1, 1, -1};
const vi dx = {0, 1, 0, -1, -1, 1, -1, 1};

#ifdef DEBUG
#define DBG if(1)
#else
#define DBG if(0)
#endif

#define dbg(x) cout << "(" << #x << " : " << x << ")" << endl;
// ostreams
template <class T, class U>
ostream& operator<<(ostream& out, const pair<T, U> &par) {out << "[" << par.first << ";" << par.second << "]"; return out;}
template <class T>
ostream& operator<<(ostream& out, const set<T> &cont) { out << "{"; for( const auto &x:cont) out << x << ", "; out << "}"; return out; }
template <class T, class U>
ostream& operator<<(ostream& out, const map<T, U> &cont) {out << "{"; for( const auto &x:cont) out << x << ", "; out << "}"; return out; }
template<class T>
ostream& operator<<(ostream& out, const vector<T> &v){ out << "[";  REP(i, v.size()) out << v[i] << ", ";  out << "]"; return out;}
// istreams
template<class T>
istream& operator>>(istream& in, vector<T> &v){ for(auto &x : v) in >> x; return in; }
template<class T, class U>
istream& operator>>(istream& in, pair<T, U> &p){ in >> p.ff >> p.ss; return in; }
//searches
template<typename T, typename U>
T bsl(T lo, T hi, U f){ hi++; T mid; while(lo < hi){ mid = (lo + hi)/2; f(mid) ? hi = mid : lo = mid+1; } return lo; }
template<typename U>
double bsld(double lo, double hi, U f, double p = 1e-9){ int r = 3 + (int)log2((hi - lo)/p); double mid; while(r--){ mid = (lo + hi)/2; f(mid) ? hi = mid : lo = mid; } return (lo + hi)/2; }
template<typename T, typename U>
T bsh(T lo, T hi, U f){ lo--; T mid; while(lo < hi){ mid = (lo + hi + 1)/2; f(mid) ? lo = mid : hi = mid-1; } return lo; }
template<typename U>
double bshd(double lo, double hi, U f, double p = 1e-9){ int r = 3+(int)log2((hi - lo)/p); double mid; while(r--){ mid = (lo + hi)/2; f(mid) ? lo = mid : hi = mid; } return (lo + hi)/2; }
// some more utility functions
template<typename T>
pair<T, int> get_min(vector<T> &v){ typename vector<T> :: iterator it = min_element(v.begin(), v.end()); return mp(*it, it - v.begin());}
template<typename T>
pair<T, int> get_max(vector<T> &v){ typename vector<T> :: iterator it = max_element(v.begin(), v.end()); return mp(*it, it - v.begin());}        
template<typename T> bool ckmin(T& a, const T& b){return b < a ? a = b , true : false;}
template<typename T> bool ckmax(T& a, const T& b){return b > a ? a = b, true : false;}

    
int main(){
 	ios_base::sync_with_stdio(false);
 	cin.tie(NULL); cout.tie(NULL);
    int n, k, m;
    cin >> n >> k >> m;
    vector<int> important(k);
    cin >> important;
    for(int&x : important) x--;
	vector<vector<ll>> dp(n, vector<ll>((1 << k), INFF));
    vector<vector<array<ll, 2>>> g(n);
    REP(i, m){
        int a, b, c;
        cin >> a >> b >> c;
        a--; b--; 
        g[a].pb({b, c});
        g[b].pb({a, c});
    }
    auto dijkstra = [&](int mask){
        priority_queue<array<ll, 2>, vector<array<ll, 2>>, greater<array<ll, 2>>> pq;
        vector<ll> dist(n, -1);
        REP(i, n) pq.push({dp[i][mask], i});
        while(!pq.empty()){
            while(!pq.empty() && dist[pq.top()[1]] != -1) 
                pq.pop();
            if(pq.empty()) break;
            auto v = pq.top(); pq.pop();
            dist[v[1]] = v[0];
            for(auto x : g[v[1]]){
                if(dist[x[0]] == -1){
                    pq.push({dist[v[1]] + x[1], x[0]});
                }
            }
        }
        REP(i, n) 
            dp[i][mask] = dist[i];
    };
    REP(mask, (1 << k)){
        if(__builtin_popcount(mask) == 0) continue;
        if(__builtin_popcount(mask) == 1){
            REP(j, k){
                if(mask&(1 << j))
                    dp[important[j]][mask] = 0;
            }
        }
        for(int sub = mask; sub > 0; sub = (sub - 1) & mask){
            int sub2 = mask ^ sub;
            REP(i, n){
                dp[i][mask] = min(dp[i][mask], dp[i][sub] + dp[i][sub2]);
            }
        }
        dijkstra(mask);
    } 
    ll ans = INFF;
    REP(i, n)
        ans = min(ans, dp[i][(1 << k) - 1]);
    cout << ans << "\n";
    return 0;
}
# Verdict Execution time Memory Grader output
1 Correct 1 ms 364 KB Output is correct
2 Correct 1 ms 364 KB Output is correct
3 Correct 1 ms 364 KB Output is correct
4 Correct 1 ms 364 KB Output is correct
5 Correct 1 ms 364 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 982 ms 35492 KB Output is correct
2 Correct 901 ms 35000 KB Output is correct
3 Correct 486 ms 24860 KB Output is correct
4 Correct 380 ms 20000 KB Output is correct
5 Correct 500 ms 32188 KB Output is correct
6 Correct 205 ms 20096 KB Output is correct
7 Correct 5 ms 620 KB Output is correct
8 Correct 3 ms 620 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 8 ms 748 KB Output is correct
2 Correct 8 ms 748 KB Output is correct
3 Correct 5 ms 876 KB Output is correct
4 Correct 8 ms 620 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1753 ms 41676 KB Output is correct
2 Correct 1821 ms 41092 KB Output is correct
3 Correct 1008 ms 31468 KB Output is correct
4 Correct 1285 ms 32036 KB Output is correct
5 Correct 797 ms 22284 KB Output is correct
6 Correct 718 ms 22360 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3844 ms 54428 KB Output is correct
2 Correct 3809 ms 54480 KB Output is correct
3 Correct 3748 ms 54036 KB Output is correct
4 Correct 2387 ms 43620 KB Output is correct
5 Correct 2605 ms 38336 KB Output is correct
6 Correct 1572 ms 23788 KB Output is correct
7 Correct 1491 ms 23140 KB Output is correct