Submission #366934

#TimeUsernameProblemLanguageResultExecution timeMemory
366934BlancaHMConnecting Supertrees (IOI20_supertrees)C++14
100 / 100
270 ms22380 KiB
#include <iostream> #include <vector> #include <unordered_map> #include "supertrees.h" using namespace std; int raiz(int a, vector<int> & padre) { if (padre[a] == a) return a; return padre[a] = raiz(padre[a], padre); } void unirConjuntos(int a, int b, vector<int> & padre, vector<int> & alturaAprox, int & numeroConjuntos) { int raiz_a, raiz_b; raiz_a = raiz(a, padre); raiz_b = raiz(b, padre); if (raiz_a == raiz_b) return; numeroConjuntos--; if (alturaAprox[raiz_a] > alturaAprox[raiz_b]) { padre[raiz_b] = raiz_a; } else if (alturaAprox[raiz_b] > alturaAprox[raiz_a]) { padre[raiz_a] = raiz_b; } else { padre[raiz_a] = raiz_b; alturaAprox[raiz_b]++; } } int construct(vector<vector<int>> p) { int N = (int) p.size(), numCCs = N; vector<int> padre(N), alturaAprox(N, 0); for (int i = 0; i < N; i++) padre[i] = i; // encontramos las componentes conexas for (int i = 0; i < N; i++) { for (int j = i+1; j < N; j++) { if (p[i][j]) { if (p[i][j] == 3) { return 0; } unirConjuntos(i, j, padre, alturaAprox, numCCs); } else if (raiz(i, padre) == raiz(j, padre)) return 0; } } // damos un índice a cada raíz unordered_map<int, int> raices; int c = 0; for (int i = 0; i < N; i++) { if (padre[i] == i) raices[i] = c++; } // guardamos las componentes conexas vector<vector<int>> CCs(numCCs); for (int i = 0; i < N; i++) CCs[raices[raiz(i, padre)]].push_back(i); int CCtamano, u, v, n, raiz_u, raiz_v; vector<vector<int>> resultadoFinal(N, vector<int>(N, 0)), serpientes; for (int i = 0; i < numCCs; i++) { CCtamano = (int) CCs[i].size(); if (CCtamano == 1) continue; // encontramos las "serpientes" de esta componente conexa n = CCtamano; for (auto node: CCs[i]) { padre[node] = node; alturaAprox[node] = 0; } for (int j = 0; j < CCtamano; j++) { u = CCs[i][j]; raiz_u = raiz(u, padre); for (int k = j+1; k < CCtamano; k++) { v = CCs[i][k]; if (p[u][v] == 1) unirConjuntos(u, v, padre, alturaAprox, n); else if (raiz_u == raiz(v, padre)) return 0; } } // nos aseguramos de que no hay incongruencias en esta componente conexa if (n == 2) return 0; raices.clear(); c = 0; for (int j = 0; j < CCtamano; j++) { u = CCs[i][j]; raiz_u = raiz(u, padre); if (raiz_u == u) raices[u] = c++; for (int k = j+1; k < CCtamano; k++) { v = CCs[i][k]; raiz_v = raiz(v, padre); if (raiz_u != raiz_v) { if (p[u][v] != 2) { return 0; } } else if (p[u][v] != 1) { return 0; } } } // conectamos los elementos dentro de una serpiente serpientes = vector<vector<int>>(n); for (int j = 0; j < CCtamano; j++) serpientes[raices[raiz(CCs[i][j], padre)]].push_back(CCs[i][j]); for (int j = 0; j < n; j++) { for (int k = 0; k < (int) serpientes[j].size() - 1; k++) resultadoFinal[serpientes[j][k]][serpientes[j][k+1]] = resultadoFinal[serpientes[j][k+1]][serpientes[j][k]] = 1; } // conectamos el ciclo de cabezas de serpiente for (int j = 0; j < n-1; j++) resultadoFinal[serpientes[j][0]][serpientes[j+1][0]] = resultadoFinal[serpientes[j+1][0]][serpientes[j][0]] = 1; if (n > 1) resultadoFinal[serpientes[0][0]][serpientes[n-1][0]] = resultadoFinal[serpientes[n-1][0]][serpientes[0][0]] = 1; } build(resultadoFinal); return 1; }
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...