Submission #365375

# Submission time Handle Problem Language Result Execution time Memory
365375 2021-02-11T14:23:29 Z ACmachine Furniture (JOI20_furniture) C++17
100 / 100
458 ms 18800 KB
#include <bits/stdc++.h>
using namespace std;

#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace __gnu_pbds;

template<typename T> using ordered_set = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
template<typename T, typename U> using ordered_map = tree<T, U, less<T>, rb_tree_tag, tree_order_statistics_node_update>;

typedef long long ll;
typedef long double ld;
typedef double db;
typedef string str;

typedef pair<int,int> pii;
typedef pair<ll,ll> pll;

typedef vector<int> vi;
typedef vector<ll> vll;
typedef vector<pii> vpii;
typedef vector<pll> vpll;
typedef vector<str> vstr;

#define FOR(i,j,k,in) for(int i=(j); i < (k);i+=in)
#define FORD(i,j,k,in) for(int i=(j); i >=(k);i-=in)
#define REP(i,b) FOR(i,0,b,1)
#define REPD(i,b) FORD(i,b,0,1)
#define pb push_back 
#define mp make_pair
#define ff first
#define ss second
#define all(x) begin(x), end(x)
#define rsz resize 
#define MANY_TESTS int tcase; cin >> tcase; while(tcase--)
	
const double EPS = 1e-9;
const int MOD = 1e9+7; // 998244353;
const ll INFF = 1e18;
const int INF = 1e9;
const ld PI = acos((ld)-1);
const vi dy = {1, 0, -1, 0, -1, 1, 1, -1};
const vi dx = {0, 1, 0, -1, -1, 1, -1, 1};

#ifdef DEBUG
#define DBG if(1)
#else
#define DBG if(0)
#endif

#define dbg(x) cout << "(" << #x << " : " << x << ")" << endl;
// ostreams
template <class T, class U>
ostream& operator<<(ostream& out, const pair<T, U> &par) {out << "[" << par.first << ";" << par.second << "]"; return out;}
template <class T>
ostream& operator<<(ostream& out, const set<T> &cont) { out << "{"; for( const auto &x:cont) out << x << ", "; out << "}"; return out; }
template <class T, class U>
ostream& operator<<(ostream& out, const map<T, U> &cont) {out << "{"; for( const auto &x:cont) out << x << ", "; out << "}"; return out; }
template<class T>
ostream& operator<<(ostream& out, const vector<T> &v){ out << "[";  REP(i, v.size()) out << v[i] << ", ";  out << "]"; return out;}
// istreams
template<class T>
istream& operator>>(istream& in, vector<T> &v){ for(auto &x : v) in >> x; return in; }
template<class T, class U>
istream& operator>>(istream& in, pair<T, U> &p){ in >> p.ff >> p.ss; return in; }
//searches
template<typename T, typename U>
T bsl(T lo, T hi, U f){ hi++; T mid; while(lo < hi){ mid = (lo + hi)/2; f(mid) ? hi = mid : lo = mid+1; } return lo; }
template<typename U>
double bsld(double lo, double hi, U f, double p = 1e-9){ int r = 3 + (int)log2((hi - lo)/p); double mid; while(r--){ mid = (lo + hi)/2; f(mid) ? hi = mid : lo = mid; } return (lo + hi)/2; }
template<typename T, typename U>
T bsh(T lo, T hi, U f){ lo--; T mid; while(lo < hi){ mid = (lo + hi + 1)/2; f(mid) ? lo = mid : hi = mid-1; } return lo; }
template<typename U>
double bshd(double lo, double hi, U f, double p = 1e-9){ int r = 3+(int)log2((hi - lo)/p); double mid; while(r--){ mid = (lo + hi)/2; f(mid) ? lo = mid : hi = mid; } return (lo + hi)/2; }
// some more utility functions
template<typename T>
pair<T, int> get_min(vector<T> &v){ typename vector<T> :: iterator it = min_element(v.begin(), v.end()); return mp(*it, it - v.begin());}
template<typename T>
pair<T, int> get_max(vector<T> &v){ typename vector<T> :: iterator it = max_element(v.begin(), v.end()); return mp(*it, it - v.begin());}        
template<typename T> bool ckmin(T& a, const T& b){return b < a ? a = b , true : false;}
template<typename T> bool ckmax(T& a, const T& b){return b > a ? a = b, true : false;}

    
int main(){
 	ios_base::sync_with_stdio(false);
 	cin.tie(NULL); cout.tie(NULL);
	int n, m;
    cin >> n >> m;
    vi cnt(n + m + 10, 0);
    vector<vi> c(n, vi(m, 0)); 
    auto add_block = [&](int row, int col){
        if(c[row][col] == 1) return 1;
        if(cnt[row + col] - 1 == 0){
            return 0;
        }
        else{
            auto bd = [&](int f, int s){
                return (f < 0 || f >= n || s < 0 || s >= m || c[f][s] == 1); 
            };
            queue<array<int, 2>> q;
            q.push({row, col});
            while(!q.empty()){
                array<int, 2> v = q.front();
                q.pop();
                if(c[v[0]][v[1]] == 1) continue;
                if((v[0] == 0 && v[1] == 0) || (v[0] == n - 1 && v[1] == m - 1)) continue;
                c[v[0]][v[1]] = 1;
                cnt[v[0] + v[1]]--;
                REP(sm, 4){
                    int ny = v[0] + dy[sm];
                    int nx = v[1] + dx[sm];
                    if(ny < 0 || ny >= n || nx < 0 || nx >= m) continue;
                    if(bd(ny + 1, nx) && bd(ny, nx + 1))
                        q.push({ny, nx});
                    else if(bd(ny - 1, nx) && bd(ny, nx - 1))
                        q.push({ny, nx});
                }
            }
            return 1;
        }
    };
    vector<vi> in(n, vi(m, 0));
    REP(i, n) cin >> in[i];
    REP(i, n) REP(j, m) cnt[i + j]++;
    REP(i, n){
        REP(j, m){
            if(in[i][j] == 1) 
                add_block(i, j);
        }
    }
    int q; cin >> q;
    REP(i, q){
        int row, col;
        cin >> row >> col;
        row--; col--;
        cout << add_block(row, col) << "\n";
    }
    return 0;
}
# Verdict Execution time Memory Grader output
1 Correct 1 ms 364 KB Output is correct
2 Correct 2 ms 364 KB Output is correct
3 Correct 3 ms 492 KB Output is correct
4 Correct 4 ms 492 KB Output is correct
5 Correct 4 ms 492 KB Output is correct
6 Correct 5 ms 492 KB Output is correct
7 Correct 4 ms 492 KB Output is correct
8 Correct 4 ms 492 KB Output is correct
9 Correct 4 ms 492 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 364 KB Output is correct
2 Correct 2 ms 364 KB Output is correct
3 Correct 3 ms 492 KB Output is correct
4 Correct 4 ms 492 KB Output is correct
5 Correct 4 ms 492 KB Output is correct
6 Correct 5 ms 492 KB Output is correct
7 Correct 4 ms 492 KB Output is correct
8 Correct 4 ms 492 KB Output is correct
9 Correct 4 ms 492 KB Output is correct
10 Correct 17 ms 1132 KB Output is correct
11 Correct 4 ms 492 KB Output is correct
12 Correct 259 ms 12396 KB Output is correct
13 Correct 97 ms 9076 KB Output is correct
14 Correct 414 ms 17028 KB Output is correct
15 Correct 416 ms 16828 KB Output is correct
16 Correct 421 ms 18284 KB Output is correct
17 Correct 432 ms 18540 KB Output is correct
18 Correct 442 ms 18464 KB Output is correct
19 Correct 458 ms 18800 KB Output is correct
20 Correct 427 ms 18680 KB Output is correct
21 Correct 449 ms 18284 KB Output is correct