Submission #363874

#TimeUsernameProblemLanguageResultExecution timeMemory
3638742qbingxuanAsceticism (JOI18_asceticism)C++14
4 / 100
1075 ms492 KiB
// __________________ // | ________________ | // || ____ || // || /\ | || // || /__\ | || // || / \ |____ || // ||________________|| // |__________________| // \###################\Q // \###################\Q // \ ____ \B // \_______\___\_______\X // An AC a day keeps the doctor away. #ifdef local // #define _GLIBCXX_DEBUG AC #include <bits/extc++.h> #define safe std::cerr<<__PRETTY_FUNCTION__<<" line "<<__LINE__<<" safe\n" #define debug(args...) qqbx(#args, args) #define TAK(args...) std::ostream& operator<<(std::ostream &O, args) #define NIE(STL, BEG, END, OUT) template <typename ...T> TAK(std::STL<T...> v) \ { O << BEG; int f=0; for(auto e: v) O << (f++ ? ", " : "") << OUT; return O << END; } NIE(deque, "[", "]", e) ; NIE(vector, "[", "]", e) NIE(set, "{", "}", e) ; NIE(multiset, "{", "}", e) ; NIE(unordered_set, "{", "}", e) NIE(map , "{", "}", e.first << ":" << e.second) NIE(unordered_map , "{", "}", e.first << ":" << e.second) template <typename ...T> TAK(std::pair<T...> p) { return O << '(' << p.first << ',' << p.second << ')'; } template <typename T, size_t N> TAK(std::array<T,N> a) { return O << std::vector<T>(a.begin(), a.end()); } template <typename ...T> TAK(std::tuple<T...> t) { return O << "(", std::apply([&O](T ...s){ int f=0; (..., (O << (f++ ? ", " : "") << s)); }, t), O << ")"; } template <typename ...T> void qqbx(const char *s, T ...args) { int cnt = sizeof...(T); if(!cnt) return std::cerr << "\033[1;32m() = ()\033\[0m\n", void(); (std::cerr << "\033[1;32m(" << s << ") = (" , ... , (std::cerr << args << (--cnt ? ", " : ")\033[0m\n"))); } #else #pragma GCC optimize("Ofast") #pragma loop_opt(on) #include <bits/extc++.h> #include <bits/stdc++.h> #define debug(...) ((void)0) #define safe ((void)0) #endif // local #define pb emplace_back #define all(v) begin(v),end(v) #define mem(v,x) memset(v,x,sizeof v) #define ff first #define ss second template <typename T, T MOD> class Modular { public: constexpr Modular() : v() {} template <typename U> Modular(const U &u) { v = (0 <= u && u < MOD ? u : (u%MOD+MOD)%MOD); } template <typename U> explicit operator U() const { return U(v); } T operator()() const { return v; } #define REFOP(type, expr...) Modular &operator type (const Modular &rhs) { return expr, *this; } REFOP(+=, v += rhs.v - MOD, v += MOD & (v >> width)) ; REFOP(-=, v -= rhs.v, v += MOD & (v >> width)) // fits for MOD^2 <= 9e18 REFOP(*=, v = 1LL * v * rhs.v % MOD) ; REFOP(/=, *this *= inverse(rhs.v)) #define VALOP(op) friend Modular operator op (Modular a, const Modular &b) { return a op##= b; } VALOP(+) ; VALOP(-) ; VALOP(*) ; VALOP(/) Modular operator-() const { return 0 - *this; } friend bool operator == (const Modular &lhs, const Modular &rhs) { return lhs.v == rhs.v; } friend bool operator != (const Modular &lhs, const Modular &rhs) { return lhs.v != rhs.v; } friend std::istream & operator>>(std::istream &I, Modular &m) { T x; I >> x, m = x; return I; } friend std::ostream & operator<<(std::ostream &O, const Modular &m) { return O << m.v; } private: constexpr static int width = sizeof(T) * 8 - 1; T v; static T inverse(T a) { // copy from tourist's template T u = 0, v = 1, m = MOD; while (a != 0) { T t = m / a; m -= t * a; std::swap(a, m); u -= t * v; std::swap(u, v); } assert(m == 1); return u; } }; using namespace std; using namespace __gnu_pbds; typedef int64_t ll; typedef long double ld; typedef pair<ll,ll> pll; typedef pair<ld,ld> pld; template <typename T> using max_heap = std::priority_queue<T,vector<T>,less<T> >; template <typename T> using min_heap = std::priority_queue<T,vector<T>,greater<T> >; template <typename T> using rbt = tree<T,null_type,less<T>,rb_tree_tag,tree_order_statistics_node_update>; template <typename V, typename T> int get_pos(const V &v, T x) { return lower_bound(all(v),x) - begin(v); } template <typename V> void sort_uni(V &v) { sort(all(v)), v.erase(unique(all(v)),end(v)); } template <typename T> bool chmin(T &x, const T &v) { return v < x ? (x=v, true) : false; } template <typename T> bool chmax(T &x, const T &v) { return x < v ? (x=v, true) : false; } constexpr inline ll cdiv(ll x, ll m) { return x/m + (x%m ? (x<0) ^ (m>0) : 0); } // ceiling divide constexpr inline ll modpow(ll e,ll p,ll m) { ll r=1; for(e%=m;p;p>>=1,e=e*e%m) if(p&1) r=r*e%m; return r; } constexpr ld PI = acos(-1), eps = 1e-7; constexpr ll N = 500025, INF = 1e18, MOD = 1000000007, K = 14699, inf = 1e9; using Mint = Modular<int, MOD>; Mint modpow(Mint e, uint64_t p) { Mint r = 1; while(p) (p&1) && (r *= e), e *= e, p >>= 1; return r; } // 0^0 = 1 Mint dp[2][N], fac[N]; signed main() { ios_base::sync_with_stdio(0), cin.tie(0); int n, k; cin >> n >> k; /* dp[0][0] = 1; fac[0] = 1; for (int i = 1; i <= n; i++) fac[i] = fac[i-1] * i; for (int t = 1; t <= k; t++) { for (int i = 1; i <= n; i++) { dp[t & 1][i] = 0; for (int j = 0; j < i; j++) { dp[t & 1][i] += dp[~t & 1][j] / (fac[j] * fac[i-j]); } dp[t & 1][i] *= fac[i]; } } cout << dp[k & 1][n] << '\n'; return 0; */ // dp[k][n] = \sum _ x dp[k-1][n - x]; vector<int> v(n); iota(all(v), 1); vector<int> ans(n+1); do { int last = 0, cnt = 1; for (int x: v) { if (last > x) ++cnt; last = x; } ++ans[cnt]; } while (next_permutation(all(v))); cout << ans[k] << '\n'; }

Compilation message (stderr)

asceticism.cpp:39: warning: ignoring #pragma loop_opt  [-Wunknown-pragmas]
   39 | #pragma loop_opt(on)
      |
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...