// __________________
// | ________________ |
// || ____ ||
// || /\ | ||
// || /__\ | ||
// || / \ |____ ||
// ||________________||
// |__________________|
// \###################\Q
// \###################\Q
// \ ____ \B
// \_______\___\_______\X
// An AC a day keeps the doctor away.
#ifdef local
// #define _GLIBCXX_DEBUG AC
#include <bits/extc++.h>
#define safe std::cerr<<__PRETTY_FUNCTION__<<" line "<<__LINE__<<" safe\n"
#define debug(args...) qqbx(#args, args)
#define TAK(args...) std::ostream& operator<<(std::ostream &O, args)
#define NIE(STL, BEG, END, OUT) template <typename ...T> TAK(std::STL<T...> v) \
{ O << BEG; int f=0; for(auto e: v) O << (f++ ? ", " : "") << OUT; return O << END; }
NIE(deque, "[", "]", e) ; NIE(vector, "[", "]", e)
NIE(set, "{", "}", e) ; NIE(multiset, "{", "}", e) ; NIE(unordered_set, "{", "}", e)
NIE(map , "{", "}", e.first << ":" << e.second)
NIE(unordered_map , "{", "}", e.first << ":" << e.second)
template <typename ...T> TAK(std::pair<T...> p) { return O << '(' << p.first << ',' << p.second << ')'; }
template <typename T, size_t N> TAK(std::array<T,N> a) { return O << std::vector<T>(a.begin(), a.end()); }
template <typename ...T> TAK(std::tuple<T...> t) {
return O << "(", std::apply([&O](T ...s){ int f=0; (..., (O << (f++ ? ", " : "") << s)); }, t), O << ")";
}
template <typename ...T> void qqbx(const char *s, T ...args) {
int cnt = sizeof...(T);
if(!cnt) return std::cerr << "\033[1;32m() = ()\033\[0m\n", void();
(std::cerr << "\033[1;32m(" << s << ") = (" , ... , (std::cerr << args << (--cnt ? ", " : ")\033[0m\n")));
}
#else
#pragma GCC optimize("Ofast")
#pragma loop_opt(on)
#include <bits/extc++.h>
#include <bits/stdc++.h>
#define debug(...) ((void)0)
#define safe ((void)0)
#endif // local
#define pb emplace_back
#define all(v) begin(v),end(v)
#define mem(v,x) memset(v,x,sizeof v)
#define ff first
#define ss second
template <typename T, T MOD> class Modular {
public:
constexpr Modular() : v() {}
template <typename U> Modular(const U &u) { v = (0 <= u && u < MOD ? u : (u%MOD+MOD)%MOD); }
template <typename U> explicit operator U() const { return U(v); }
T operator()() const { return v; }
#define REFOP(type, expr...) Modular &operator type (const Modular &rhs) { return expr, *this; }
REFOP(+=, v += rhs.v - MOD, v += MOD & (v >> width)) ; REFOP(-=, v -= rhs.v, v += MOD & (v >> width))
// fits for MOD^2 <= 9e18
REFOP(*=, v = 1LL * v * rhs.v % MOD) ; REFOP(/=, *this *= inverse(rhs.v))
#define VALOP(op) friend Modular operator op (Modular a, const Modular &b) { return a op##= b; }
VALOP(+) ; VALOP(-) ; VALOP(*) ; VALOP(/)
Modular operator-() const { return 0 - *this; }
friend bool operator == (const Modular &lhs, const Modular &rhs) { return lhs.v == rhs.v; }
friend bool operator != (const Modular &lhs, const Modular &rhs) { return lhs.v != rhs.v; }
friend std::istream & operator>>(std::istream &I, Modular &m) { T x; I >> x, m = x; return I; }
friend std::ostream & operator<<(std::ostream &O, const Modular &m) { return O << m.v; }
private:
constexpr static int width = sizeof(T) * 8 - 1;
T v;
static T inverse(T a) {
// copy from tourist's template
T u = 0, v = 1, m = MOD;
while (a != 0) {
T t = m / a;
m -= t * a; std::swap(a, m);
u -= t * v; std::swap(u, v);
}
assert(m == 1);
return u;
}
};
using namespace std;
using namespace __gnu_pbds;
typedef int64_t ll;
typedef long double ld;
typedef pair<ll,ll> pll;
typedef pair<ld,ld> pld;
template <typename T> using max_heap = std::priority_queue<T,vector<T>,less<T> >;
template <typename T> using min_heap = std::priority_queue<T,vector<T>,greater<T> >;
template <typename T> using rbt = tree<T,null_type,less<T>,rb_tree_tag,tree_order_statistics_node_update>;
template <typename V, typename T> int get_pos(const V &v, T x) { return lower_bound(all(v),x) - begin(v); }
template <typename V> void sort_uni(V &v) { sort(all(v)), v.erase(unique(all(v)),end(v)); }
template <typename T> bool chmin(T &x, const T &v) { return v < x ? (x=v, true) : false; }
template <typename T> bool chmax(T &x, const T &v) { return x < v ? (x=v, true) : false; }
constexpr inline ll cdiv(ll x, ll m) { return x/m + (x%m ? (x<0) ^ (m>0) : 0); } // ceiling divide
constexpr inline ll modpow(ll e,ll p,ll m) { ll r=1; for(e%=m;p;p>>=1,e=e*e%m) if(p&1) r=r*e%m; return r; }
constexpr ld PI = acos(-1), eps = 1e-7;
constexpr ll N = 500025, INF = 1e18, MOD = 1000000007, K = 14699, inf = 1e9;
using Mint = Modular<int, MOD>;
Mint modpow(Mint e, uint64_t p) { Mint r = 1; while(p) (p&1) && (r *= e), e *= e, p >>= 1; return r; } // 0^0 = 1
Mint dp[2][N], fac[N];
signed main() {
ios_base::sync_with_stdio(0), cin.tie(0);
int n, k;
cin >> n >> k;
/*
dp[0][0] = 1;
fac[0] = 1;
for (int i = 1; i <= n; i++) fac[i] = fac[i-1] * i;
for (int t = 1; t <= k; t++) {
for (int i = 1; i <= n; i++) {
dp[t & 1][i] = 0;
for (int j = 0; j < i; j++) {
dp[t & 1][i] += dp[~t & 1][j] / (fac[j] * fac[i-j]);
}
dp[t & 1][i] *= fac[i];
}
}
cout << dp[k & 1][n] << '\n';
return 0;
*/
// dp[k][n] = \sum _ x dp[k-1][n - x];
vector<int> v(n);
iota(all(v), 1);
vector<int> ans(n+1);
do {
int last = 0, cnt = 1;
for (int x: v) {
if (last > x)
++cnt;
last = x;
}
++ans[cnt];
} while (next_permutation(all(v)));
cout << ans[k] << '\n';
}
Compilation message
asceticism.cpp:39: warning: ignoring #pragma loop_opt [-Wunknown-pragmas]
39 | #pragma loop_opt(on)
|
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
1 ms |
364 KB |
Output is correct |
2 |
Correct |
56 ms |
364 KB |
Output is correct |
3 |
Correct |
54 ms |
364 KB |
Output is correct |
4 |
Correct |
54 ms |
364 KB |
Output is correct |
5 |
Correct |
56 ms |
492 KB |
Output is correct |
6 |
Correct |
1 ms |
364 KB |
Output is correct |
7 |
Correct |
7 ms |
364 KB |
Output is correct |
8 |
Correct |
1 ms |
364 KB |
Output is correct |
9 |
Correct |
1 ms |
364 KB |
Output is correct |
10 |
Correct |
1 ms |
364 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
1 ms |
364 KB |
Output is correct |
2 |
Correct |
56 ms |
364 KB |
Output is correct |
3 |
Correct |
54 ms |
364 KB |
Output is correct |
4 |
Correct |
54 ms |
364 KB |
Output is correct |
5 |
Correct |
56 ms |
492 KB |
Output is correct |
6 |
Correct |
1 ms |
364 KB |
Output is correct |
7 |
Correct |
7 ms |
364 KB |
Output is correct |
8 |
Correct |
1 ms |
364 KB |
Output is correct |
9 |
Correct |
1 ms |
364 KB |
Output is correct |
10 |
Correct |
1 ms |
364 KB |
Output is correct |
11 |
Execution timed out |
1075 ms |
364 KB |
Time limit exceeded |
12 |
Halted |
0 ms |
0 KB |
- |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
1 ms |
364 KB |
Output is correct |
2 |
Correct |
56 ms |
364 KB |
Output is correct |
3 |
Correct |
54 ms |
364 KB |
Output is correct |
4 |
Correct |
54 ms |
364 KB |
Output is correct |
5 |
Correct |
56 ms |
492 KB |
Output is correct |
6 |
Correct |
1 ms |
364 KB |
Output is correct |
7 |
Correct |
7 ms |
364 KB |
Output is correct |
8 |
Correct |
1 ms |
364 KB |
Output is correct |
9 |
Correct |
1 ms |
364 KB |
Output is correct |
10 |
Correct |
1 ms |
364 KB |
Output is correct |
11 |
Execution timed out |
1075 ms |
364 KB |
Time limit exceeded |
12 |
Halted |
0 ms |
0 KB |
- |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
1 ms |
364 KB |
Output is correct |
2 |
Correct |
56 ms |
364 KB |
Output is correct |
3 |
Correct |
54 ms |
364 KB |
Output is correct |
4 |
Correct |
54 ms |
364 KB |
Output is correct |
5 |
Correct |
56 ms |
492 KB |
Output is correct |
6 |
Correct |
1 ms |
364 KB |
Output is correct |
7 |
Correct |
7 ms |
364 KB |
Output is correct |
8 |
Correct |
1 ms |
364 KB |
Output is correct |
9 |
Correct |
1 ms |
364 KB |
Output is correct |
10 |
Correct |
1 ms |
364 KB |
Output is correct |
11 |
Execution timed out |
1075 ms |
364 KB |
Time limit exceeded |
12 |
Halted |
0 ms |
0 KB |
- |