# |
Submission time |
Handle |
Problem |
Language |
Result |
Execution time |
Memory |
363823 |
2021-02-07T10:34:01 Z |
KoD |
Fire (JOI20_ho_t5) |
C++17 |
|
1000 ms |
109756 KB |
#line 1 "main.cpp"
/**
* @title Template
*/
#include <iostream>
#include <algorithm>
#include <utility>
#include <numeric>
#include <vector>
#include <array>
#include <cassert>
#include <stack>
#line 2 "/Users/kodamankod/Desktop/cpp_programming/Library/other/range.cpp"
#line 4 "/Users/kodamankod/Desktop/cpp_programming/Library/other/range.cpp"
class range {
struct iter {
std::size_t itr;
constexpr iter(std::size_t pos) noexcept: itr(pos) { }
constexpr void operator ++ () noexcept { ++itr; }
constexpr bool operator != (iter other) const noexcept { return itr != other.itr; }
constexpr std::size_t operator * () const noexcept { return itr; }
};
struct reviter {
std::size_t itr;
constexpr reviter(std::size_t pos) noexcept: itr(pos) { }
constexpr void operator ++ () noexcept { --itr; }
constexpr bool operator != (reviter other) const noexcept { return itr != other.itr; }
constexpr std::size_t operator * () const noexcept { return itr; }
};
const iter first, last;
public:
constexpr range(std::size_t first, std::size_t last) noexcept: first(first), last(std::max(first, last)) { }
constexpr iter begin() const noexcept { return first; }
constexpr iter end() const noexcept { return last; }
constexpr reviter rbegin() const noexcept { return reviter(*last - 1); }
constexpr reviter rend() const noexcept { return reviter(*first - 1); }
};
/**
* @title Range
*/
#line 2 "/Users/kodamankod/Desktop/cpp_programming/Library/other/rev.cpp"
#include <type_traits>
#include <iterator>
#line 6 "/Users/kodamankod/Desktop/cpp_programming/Library/other/rev.cpp"
template <class T>
class rev_impl {
public:
using iterator = decltype(std::rbegin(std::declval<T>()));
private:
const iterator M_begin;
const iterator M_end;
public:
constexpr rev_impl(T &&cont) noexcept: M_begin(std::rbegin(cont)), M_end(std::rend(cont)) { }
constexpr iterator begin() const noexcept { return M_begin; }
constexpr iterator end() const noexcept { return M_end; }
};
template <class T>
constexpr decltype(auto) rev(T &&cont) {
return rev_impl<T>(std::forward<T>(cont));
}
/**
* @title Reverser
*/
#line 2 "/Users/kodamankod/Desktop/cpp_programming/Library/container/lazy_propagation_segment_tree.cpp"
#line 2 "/Users/kodamankod/Desktop/cpp_programming/Library/other/bit_operation.cpp"
#include <cstddef>
#include <cstdint>
constexpr size_t bit_ppc(const uint64_t x) { return __builtin_popcountll(x); }
constexpr size_t bit_ctzr(const uint64_t x) { return x == 0 ? 64 : __builtin_ctzll(x); }
constexpr size_t bit_ctzl(const uint64_t x) { return x == 0 ? 64 : __builtin_clzll(x); }
constexpr size_t bit_width(const uint64_t x) { return 64 - bit_ctzl(x); }
constexpr uint64_t bit_msb(const uint64_t x) { return x == 0 ? 0 : uint64_t(1) << (bit_width(x) - 1); }
constexpr uint64_t bit_lsb(const uint64_t x) { return x & (-x); }
constexpr uint64_t bit_cover(const uint64_t x) { return x == 0 ? 0 : bit_msb(2 * x - 1); }
constexpr uint64_t bit_rev(uint64_t x) {
x = ((x >> 1) & 0x5555555555555555) | ((x & 0x5555555555555555) << 1);
x = ((x >> 2) & 0x3333333333333333) | ((x & 0x3333333333333333) << 2);
x = ((x >> 4) & 0x0F0F0F0F0F0F0F0F) | ((x & 0x0F0F0F0F0F0F0F0F) << 4);
x = ((x >> 8) & 0x00FF00FF00FF00FF) | ((x & 0x00FF00FF00FF00FF) << 8);
x = ((x >> 16) & 0x0000FFFF0000FFFF) | ((x & 0x0000FFFF0000FFFF) << 16);
x = (x >> 32) | (x << 32);
return x;
}
/**
* @title Bit Operations
*/
#line 2 "/Users/kodamankod/Desktop/cpp_programming/Library/other/monoid.cpp"
#include <type_traits>
#line 5 "/Users/kodamankod/Desktop/cpp_programming/Library/other/monoid.cpp"
#include <stdexcept>
template <class T, class = void>
class has_identity: public std::false_type { };
template <class T>
class has_identity<T, typename std::conditional<false, decltype(T::identity()), void>::type>: public std::true_type { };
template <class T>
constexpr typename std::enable_if<has_identity<T>::value, typename T::type>::type empty_exception() {
return T::identity();
}
template <class T>
[[noreturn]] typename std::enable_if<!has_identity<T>::value, typename T::type>::type empty_exception() {
throw std::runtime_error("type T has no identity");
}
template <class T, bool HasIdentity>
class fixed_monoid_impl: public T {
public:
using type = typename T::type;
static constexpr type convert(const type &value) { return value; }
static constexpr type revert(const type &value) { return value; }
template <class Mapping, class Value, class... Args>
static constexpr void operate(Mapping &&func, Value &value, const type &op, Args&&... args) {
value = func(value, op, std::forward<Args>(args)...);
}
template <class Constraint>
static constexpr bool satisfies(Constraint &&func, const type &value) {
return func(value);
}
};
template <class T>
class fixed_monoid_impl<T, false> {
public:
class type {
public:
typename T::type value;
bool state;
explicit constexpr type(): value(typename T::type { }), state(false) { }
explicit constexpr type(const typename T::type &value): value(value), state(true) { }
};
static constexpr type convert(const typename T::type &value) { return type(value); }
static constexpr typename T::type revert(const type &value) {
if (!value.state) throw std::runtime_error("attempted to revert identity to non-monoid");
return value.value;
}
static constexpr type identity() { return type(); }
static constexpr type operation(const type &v1, const type &v2) {
if (!v1.state) return v2;
if (!v2.state) return v1;
return type(T::operation(v1.value, v2.value));
}
template <class Mapping, class Value, class... Args>
static constexpr void operate(Mapping &&func, Value &value, const type &op, Args&&... args) {
if (!op.state) return;
value = func(value, op.value, std::forward<Args>(args)...);
}
template <class Constraint>
static constexpr bool satisfies(Constraint &&func, const type &value) {
if (!value.state) return false;
return func(value.value);
}
};
template <class T>
using fixed_monoid = fixed_monoid_impl<T, has_identity<T>::value>;
/**
* @title Monoid Utility
*/
#line 5 "/Users/kodamankod/Desktop/cpp_programming/Library/container/lazy_propagation_segment_tree.cpp"
#line 11 "/Users/kodamankod/Desktop/cpp_programming/Library/container/lazy_propagation_segment_tree.cpp"
template <class CombinedMonoid>
class lazy_propagation_segment_tree {
public:
using structure = CombinedMonoid;
using value_monoid = typename CombinedMonoid::value_structure;
using operator_monoid = typename CombinedMonoid::operator_structure;
using value_type = typename CombinedMonoid::value_structure::type;
using operator_type = typename CombinedMonoid::operator_structure::type;
using size_type = size_t;
private:
using fixed_operator_monoid = fixed_monoid<operator_monoid>;
using fixed_operator_type = typename fixed_operator_monoid::type;
class node_type {
public:
value_type value;
fixed_operator_type lazy;
node_type(
const value_type &value = value_monoid::identity(),
const fixed_operator_type &lazy = fixed_operator_monoid::identity()
): value(value), lazy(lazy) { }
};
static void S_apply(node_type &node, const fixed_operator_type &op, const size_type length) {
fixed_operator_monoid::operate(structure::operation, node.value, op, length);
node.lazy = fixed_operator_monoid::operation(node.lazy, op);
}
void M_propagate(const size_type index, const size_type length) {
S_apply(M_tree[index << 1 | 0], M_tree[index].lazy, length);
S_apply(M_tree[index << 1 | 1], M_tree[index].lazy, length);
M_tree[index].lazy = fixed_operator_monoid::identity();
}
void M_fix_change(const size_type index) {
M_tree[index].value =
value_monoid::operation(M_tree[index << 1 | 0].value, M_tree[index << 1 | 1].value);
}
void M_pushdown(const size_type index) {
const size_type lsb = bit_ctzr(index);
for (size_type story = bit_width(index); story != lsb; --story) {
M_propagate(index >> story, 1 << (story - 1));
}
}
void M_pullup(size_type index) {
index >>= bit_ctzr(index);
while (index != 1) {
index >>= 1;
M_fix_change(index);
}
}
std::vector<node_type> M_tree;
public:
lazy_propagation_segment_tree() = default;
explicit lazy_propagation_segment_tree(const size_type size) { initialize(size); }
template <class InputIterator>
explicit lazy_propagation_segment_tree(InputIterator first, InputIterator last) { construct(first, last); }
void initialize(const size_type size) {
clear();
M_tree.assign(size << 1, node_type());
}
template <class InputIterator>
void construct(InputIterator first, InputIterator last) {
clear();
const size_type size = std::distance(first, last);
M_tree.reserve(size << 1);
M_tree.assign(size, node_type());
for (; first != last; ++first) {
M_tree.emplace_back(*first, fixed_operator_monoid::identity());
}
for (size_type index = size - 1; index != 0; --index) {
M_fix_change(index);
}
}
value_type fold(size_type first, size_type last) {
assert(first <= last);
assert(last <= size());
first += size();
last += size();
M_pushdown(first);
M_pushdown(last);
value_type fold_l = value_monoid::identity();
value_type fold_r = value_monoid::identity();
while (first != last) {
if (first & 1) {
fold_l = value_monoid::operation(fold_l, M_tree[first].value);
++first;
}
if (last & 1) {
--last;
fold_r = value_monoid::operation(M_tree[last].value, fold_r);
}
first >>= 1;
last >>= 1;
}
return value_monoid::operation(fold_l, fold_r);
}
void operate(size_type first, size_type last, const operator_type &op_) {
assert(first <= last);
assert(last <= size());
const auto op = fixed_operator_monoid::convert(op_);
first += size();
last += size();
M_pushdown(first);
M_pushdown(last);
const size_type first_c = first;
const size_type last_c = last;
for (size_type story = 0; first != last; ++story) {
if (first & 1) {
S_apply(M_tree[first], op, 1 << story);
++first;
}
if (last & 1) {
--last;
S_apply(M_tree[last], op, 1 << story);
}
first >>= 1;
last >>= 1;
}
M_pullup(first_c);
M_pullup(last_c);
}
void assign(size_type index, const value_type &val) {
assert(index < size());
index += size();
for (size_type story = bit_width(index); story != 0; --story) {
M_propagate(index >> story, 1 << (story - 1));
}
M_tree[index].value = val;
M_tree[index].lazy = fixed_operator_monoid::identity();
while (index != 1) {
index >>= 1;
M_fix_change(index);
}
}
template <bool ToRight = true, class Constraint, std::enable_if_t<ToRight>* = nullptr>
size_type satisfies(const size_type left, Constraint &&func) {
assert(left <= size());
if (func(value_monoid::identity())) return left;
size_type first = left + size();
size_type last = 2 * size();
M_pushdown(first);
M_pushdown(last);
const size_type last_c = last;
value_type fold = value_monoid::identity();
const auto try_merge = [&](const size_type index) {
value_type tmp = value_monoid::operation(fold, M_tree[index].value);
if (func(tmp)) return true;
fold = std::move(tmp);
return false;
};
const auto subtree = [&](size_type index, size_type story) {
while (index < size()) {
M_propagate(index, 1 << (story - 1));
index <<= 1;
if (!try_merge(index)) ++index;
--story;
}
return index - size() + 1;
};
size_type story = 0;
while (first < last) {
if (first & 1) {
if (try_merge(first)) return subtree(first, story);
++first;
}
first >>= 1;
last >>= 1;
++story;
}
while (story--) {
last = last_c >> story;
if (last & 1) {
--last;
if (try_merge(last)) return subtree(last, story);
}
}
return size() + 1;
}
template <bool ToRight = true, class Constraint, std::enable_if_t<!ToRight>* = nullptr>
size_type satisfies(const size_type right, Constraint &&func) {
assert(right <= size());
if (func(value_monoid::identity())) return right;
size_type first = size();
size_type last = right + size();
M_pushdown(first);
M_pushdown(last);
const size_type first_c = first;
value_type fold = value_monoid::identity();
const auto try_merge = [&](const size_type index) {
value_type tmp = value_monoid::operation(M_tree[index].value, fold);
if (func(tmp)) return true;
fold = std::move(tmp);
return false;
};
const auto subtree = [&](size_type index, size_type story) {
while (index < size()) {
M_propagate(index, 1 << (story - 1));
index <<= 1;
if (try_merge(index + 1)) ++index;
--story;
}
return index - size();
};
size_type story = 0;
while (first < last) {
if (first & 1) ++first;
if (last & 1) {
--last;
if (try_merge(last)) return subtree(last, story);
}
first >>= 1;
last >>= 1;
++story;
}
const size_type cover = bit_cover(first_c);
while (story--) {
first = (cover >> story) - ((cover - first_c) >> story);
if (first & 1) {
if (try_merge(first)) return subtree(first, story);
}
}
return size_type(-1);
}
void clear() {
M_tree.clear();
M_tree.shrink_to_fit();
}
size_type size() const {
return M_tree.size() >> 1;
}
};
/**
* @title Lazy Propagation Segment Tree
*/
#line 18 "main.cpp"
using i32 = std::int32_t;
using i64 = std::int64_t;
using u32 = std::uint32_t;
using u64 = std::uint64_t;
using isize = std::ptrdiff_t;
using usize = std::size_t;
constexpr i32 inf32 = (u32) ~0 >> 2;
constexpr i64 inf64 = (u64) ~0 >> 2;
template <class T>
using Vec = std::vector<T>;
struct lst_monoid {
struct value_structure {
using type = i64;
static type identity() { return 0; }
static type operation(const type& v1, const type& v2) {
return v1 + v2;
}
};
struct operator_structure {
using type = i64;
static type identity() { return 0; }
static type operation(const type& v1, const type& v2) {
return v1 + v2;
}
};
static typename value_structure::type operation(
const typename value_structure::type &val,
const typename operator_structure::type &op,
const size_t length = 1) {
return val + op * length;
}
};
int main() {
std::ios_base::sync_with_stdio(false);
std::cin.tie(nullptr);
usize N, Q;
std::cin >> N >> Q;
Vec<i64> S(N);
for (auto &x: S) {
std::cin >> x;
}
Vec<usize> left(N);
{
std::stack<std::pair<i64, usize>> stack;
stack.emplace(inf64, 0);
for (auto i: range(0, N)) {
while (stack.top().first <= S[i]) {
stack.pop();
}
left[i] = stack.top().second;
stack.emplace(S[i], i + N);
}
}
Vec<usize> right(N);
{
std::stack<std::pair<i64, usize>> stack;
stack.emplace(inf64, 2 * N);
for (auto i: rev(range(0, N))) {
while (stack.top().first < S[i]) {
stack.pop();
}
right[i] = stack.top().second;
stack.emplace(S[i], i + N);
}
}
Vec<Vec<std::pair<usize, i64>>> ops1(N), ops2(N);
const auto add = [&](const usize l, const usize r, const i64 x) {
ops1[0].emplace_back(l, x);
ops2[0].emplace_back(r, -x);
if (r - l < N) {
ops1[r - l].emplace_back(l, -x);
ops2[r - l].emplace_back(r, x);
}
};
for (auto i: range(0, N)) {
add(left[i] + 1, right[i], S[i]);
add(left[i] + 1, i + N, -S[i]);
add(i + 1 + N, right[i], -S[i]);
}
Vec<Vec<std::tuple<usize, usize, usize>>> qs1(N), qs2(N);
for (auto i: range(0, Q)) {
usize t, l, r;
std::cin >> t >> l >> r;
if (t == N) {
t = N - 1;
}
l += N - 1;
r += N;
qs1[t].emplace_back(i, l - t, r - t);
qs2[t].emplace_back(i, l, r);
}
lazy_propagation_segment_tree<lst_monoid> seg1(2 * N), seg2(2 * N);
Vec<i64> ans(Q);
for (auto i: range(0, N)) {
for (const auto [k, x]: ops1[i]) {
seg1.operate(k, 2 * N, x);
}
for (const auto [k, x]: ops2[i]) {
seg2.operate(k, 2 * N, x);
}
for (const auto [k, l, r]: qs1[i]) {
ans[k] += seg1.fold(l, r);
}
for (const auto [k, l, r]: qs2[i]) {
ans[k] += seg2.fold(l, r);
}
}
for (const auto x: ans) {
std::cout << x << '\n';
}
return 0;
}
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
1 ms |
364 KB |
Output is correct |
2 |
Correct |
2 ms |
492 KB |
Output is correct |
3 |
Correct |
1 ms |
492 KB |
Output is correct |
4 |
Correct |
2 ms |
492 KB |
Output is correct |
5 |
Correct |
1 ms |
492 KB |
Output is correct |
6 |
Correct |
1 ms |
492 KB |
Output is correct |
7 |
Correct |
1 ms |
492 KB |
Output is correct |
8 |
Correct |
1 ms |
492 KB |
Output is correct |
9 |
Correct |
1 ms |
392 KB |
Output is correct |
10 |
Correct |
1 ms |
492 KB |
Output is correct |
11 |
Correct |
1 ms |
492 KB |
Output is correct |
12 |
Correct |
1 ms |
492 KB |
Output is correct |
13 |
Correct |
1 ms |
492 KB |
Output is correct |
14 |
Correct |
1 ms |
492 KB |
Output is correct |
15 |
Correct |
1 ms |
492 KB |
Output is correct |
16 |
Correct |
2 ms |
492 KB |
Output is correct |
17 |
Correct |
1 ms |
492 KB |
Output is correct |
18 |
Correct |
1 ms |
492 KB |
Output is correct |
19 |
Correct |
1 ms |
640 KB |
Output is correct |
20 |
Correct |
1 ms |
492 KB |
Output is correct |
21 |
Correct |
1 ms |
492 KB |
Output is correct |
22 |
Correct |
1 ms |
512 KB |
Output is correct |
23 |
Correct |
1 ms |
492 KB |
Output is correct |
24 |
Correct |
1 ms |
492 KB |
Output is correct |
25 |
Correct |
1 ms |
492 KB |
Output is correct |
26 |
Correct |
1 ms |
492 KB |
Output is correct |
27 |
Correct |
1 ms |
492 KB |
Output is correct |
28 |
Correct |
1 ms |
492 KB |
Output is correct |
29 |
Correct |
1 ms |
492 KB |
Output is correct |
30 |
Correct |
1 ms |
492 KB |
Output is correct |
31 |
Correct |
1 ms |
492 KB |
Output is correct |
32 |
Correct |
1 ms |
524 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
1 ms |
364 KB |
Output is correct |
2 |
Execution timed out |
1039 ms |
109756 KB |
Time limit exceeded |
3 |
Halted |
0 ms |
0 KB |
- |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
1 ms |
364 KB |
Output is correct |
2 |
Execution timed out |
1082 ms |
105704 KB |
Time limit exceeded |
3 |
Halted |
0 ms |
0 KB |
- |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Execution timed out |
1062 ms |
97500 KB |
Time limit exceeded |
2 |
Halted |
0 ms |
0 KB |
- |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
1 ms |
364 KB |
Output is correct |
2 |
Correct |
2 ms |
492 KB |
Output is correct |
3 |
Correct |
1 ms |
492 KB |
Output is correct |
4 |
Correct |
2 ms |
492 KB |
Output is correct |
5 |
Correct |
1 ms |
492 KB |
Output is correct |
6 |
Correct |
1 ms |
492 KB |
Output is correct |
7 |
Correct |
1 ms |
492 KB |
Output is correct |
8 |
Correct |
1 ms |
492 KB |
Output is correct |
9 |
Correct |
1 ms |
392 KB |
Output is correct |
10 |
Correct |
1 ms |
492 KB |
Output is correct |
11 |
Correct |
1 ms |
492 KB |
Output is correct |
12 |
Correct |
1 ms |
492 KB |
Output is correct |
13 |
Correct |
1 ms |
492 KB |
Output is correct |
14 |
Correct |
1 ms |
492 KB |
Output is correct |
15 |
Correct |
1 ms |
492 KB |
Output is correct |
16 |
Correct |
2 ms |
492 KB |
Output is correct |
17 |
Correct |
1 ms |
492 KB |
Output is correct |
18 |
Correct |
1 ms |
492 KB |
Output is correct |
19 |
Correct |
1 ms |
640 KB |
Output is correct |
20 |
Correct |
1 ms |
492 KB |
Output is correct |
21 |
Correct |
1 ms |
492 KB |
Output is correct |
22 |
Correct |
1 ms |
512 KB |
Output is correct |
23 |
Correct |
1 ms |
492 KB |
Output is correct |
24 |
Correct |
1 ms |
492 KB |
Output is correct |
25 |
Correct |
1 ms |
492 KB |
Output is correct |
26 |
Correct |
1 ms |
492 KB |
Output is correct |
27 |
Correct |
1 ms |
492 KB |
Output is correct |
28 |
Correct |
1 ms |
492 KB |
Output is correct |
29 |
Correct |
1 ms |
492 KB |
Output is correct |
30 |
Correct |
1 ms |
492 KB |
Output is correct |
31 |
Correct |
1 ms |
492 KB |
Output is correct |
32 |
Correct |
1 ms |
524 KB |
Output is correct |
33 |
Execution timed out |
1039 ms |
109756 KB |
Time limit exceeded |
34 |
Halted |
0 ms |
0 KB |
- |