Submission #363823

#TimeUsernameProblemLanguageResultExecution timeMemory
363823KoDFire (JOI20_ho_t5)C++17
1 / 100
1082 ms109756 KiB
#line 1 "main.cpp" /** * @title Template */ #include <iostream> #include <algorithm> #include <utility> #include <numeric> #include <vector> #include <array> #include <cassert> #include <stack> #line 2 "/Users/kodamankod/Desktop/cpp_programming/Library/other/range.cpp" #line 4 "/Users/kodamankod/Desktop/cpp_programming/Library/other/range.cpp" class range { struct iter { std::size_t itr; constexpr iter(std::size_t pos) noexcept: itr(pos) { } constexpr void operator ++ () noexcept { ++itr; } constexpr bool operator != (iter other) const noexcept { return itr != other.itr; } constexpr std::size_t operator * () const noexcept { return itr; } }; struct reviter { std::size_t itr; constexpr reviter(std::size_t pos) noexcept: itr(pos) { } constexpr void operator ++ () noexcept { --itr; } constexpr bool operator != (reviter other) const noexcept { return itr != other.itr; } constexpr std::size_t operator * () const noexcept { return itr; } }; const iter first, last; public: constexpr range(std::size_t first, std::size_t last) noexcept: first(first), last(std::max(first, last)) { } constexpr iter begin() const noexcept { return first; } constexpr iter end() const noexcept { return last; } constexpr reviter rbegin() const noexcept { return reviter(*last - 1); } constexpr reviter rend() const noexcept { return reviter(*first - 1); } }; /** * @title Range */ #line 2 "/Users/kodamankod/Desktop/cpp_programming/Library/other/rev.cpp" #include <type_traits> #include <iterator> #line 6 "/Users/kodamankod/Desktop/cpp_programming/Library/other/rev.cpp" template <class T> class rev_impl { public: using iterator = decltype(std::rbegin(std::declval<T>())); private: const iterator M_begin; const iterator M_end; public: constexpr rev_impl(T &&cont) noexcept: M_begin(std::rbegin(cont)), M_end(std::rend(cont)) { } constexpr iterator begin() const noexcept { return M_begin; } constexpr iterator end() const noexcept { return M_end; } }; template <class T> constexpr decltype(auto) rev(T &&cont) { return rev_impl<T>(std::forward<T>(cont)); } /** * @title Reverser */ #line 2 "/Users/kodamankod/Desktop/cpp_programming/Library/container/lazy_propagation_segment_tree.cpp" #line 2 "/Users/kodamankod/Desktop/cpp_programming/Library/other/bit_operation.cpp" #include <cstddef> #include <cstdint> constexpr size_t bit_ppc(const uint64_t x) { return __builtin_popcountll(x); } constexpr size_t bit_ctzr(const uint64_t x) { return x == 0 ? 64 : __builtin_ctzll(x); } constexpr size_t bit_ctzl(const uint64_t x) { return x == 0 ? 64 : __builtin_clzll(x); } constexpr size_t bit_width(const uint64_t x) { return 64 - bit_ctzl(x); } constexpr uint64_t bit_msb(const uint64_t x) { return x == 0 ? 0 : uint64_t(1) << (bit_width(x) - 1); } constexpr uint64_t bit_lsb(const uint64_t x) { return x & (-x); } constexpr uint64_t bit_cover(const uint64_t x) { return x == 0 ? 0 : bit_msb(2 * x - 1); } constexpr uint64_t bit_rev(uint64_t x) { x = ((x >> 1) & 0x5555555555555555) | ((x & 0x5555555555555555) << 1); x = ((x >> 2) & 0x3333333333333333) | ((x & 0x3333333333333333) << 2); x = ((x >> 4) & 0x0F0F0F0F0F0F0F0F) | ((x & 0x0F0F0F0F0F0F0F0F) << 4); x = ((x >> 8) & 0x00FF00FF00FF00FF) | ((x & 0x00FF00FF00FF00FF) << 8); x = ((x >> 16) & 0x0000FFFF0000FFFF) | ((x & 0x0000FFFF0000FFFF) << 16); x = (x >> 32) | (x << 32); return x; } /** * @title Bit Operations */ #line 2 "/Users/kodamankod/Desktop/cpp_programming/Library/other/monoid.cpp" #include <type_traits> #line 5 "/Users/kodamankod/Desktop/cpp_programming/Library/other/monoid.cpp" #include <stdexcept> template <class T, class = void> class has_identity: public std::false_type { }; template <class T> class has_identity<T, typename std::conditional<false, decltype(T::identity()), void>::type>: public std::true_type { }; template <class T> constexpr typename std::enable_if<has_identity<T>::value, typename T::type>::type empty_exception() { return T::identity(); } template <class T> [[noreturn]] typename std::enable_if<!has_identity<T>::value, typename T::type>::type empty_exception() { throw std::runtime_error("type T has no identity"); } template <class T, bool HasIdentity> class fixed_monoid_impl: public T { public: using type = typename T::type; static constexpr type convert(const type &value) { return value; } static constexpr type revert(const type &value) { return value; } template <class Mapping, class Value, class... Args> static constexpr void operate(Mapping &&func, Value &value, const type &op, Args&&... args) { value = func(value, op, std::forward<Args>(args)...); } template <class Constraint> static constexpr bool satisfies(Constraint &&func, const type &value) { return func(value); } }; template <class T> class fixed_monoid_impl<T, false> { public: class type { public: typename T::type value; bool state; explicit constexpr type(): value(typename T::type { }), state(false) { } explicit constexpr type(const typename T::type &value): value(value), state(true) { } }; static constexpr type convert(const typename T::type &value) { return type(value); } static constexpr typename T::type revert(const type &value) { if (!value.state) throw std::runtime_error("attempted to revert identity to non-monoid"); return value.value; } static constexpr type identity() { return type(); } static constexpr type operation(const type &v1, const type &v2) { if (!v1.state) return v2; if (!v2.state) return v1; return type(T::operation(v1.value, v2.value)); } template <class Mapping, class Value, class... Args> static constexpr void operate(Mapping &&func, Value &value, const type &op, Args&&... args) { if (!op.state) return; value = func(value, op.value, std::forward<Args>(args)...); } template <class Constraint> static constexpr bool satisfies(Constraint &&func, const type &value) { if (!value.state) return false; return func(value.value); } }; template <class T> using fixed_monoid = fixed_monoid_impl<T, has_identity<T>::value>; /** * @title Monoid Utility */ #line 5 "/Users/kodamankod/Desktop/cpp_programming/Library/container/lazy_propagation_segment_tree.cpp" #line 11 "/Users/kodamankod/Desktop/cpp_programming/Library/container/lazy_propagation_segment_tree.cpp" template <class CombinedMonoid> class lazy_propagation_segment_tree { public: using structure = CombinedMonoid; using value_monoid = typename CombinedMonoid::value_structure; using operator_monoid = typename CombinedMonoid::operator_structure; using value_type = typename CombinedMonoid::value_structure::type; using operator_type = typename CombinedMonoid::operator_structure::type; using size_type = size_t; private: using fixed_operator_monoid = fixed_monoid<operator_monoid>; using fixed_operator_type = typename fixed_operator_monoid::type; class node_type { public: value_type value; fixed_operator_type lazy; node_type( const value_type &value = value_monoid::identity(), const fixed_operator_type &lazy = fixed_operator_monoid::identity() ): value(value), lazy(lazy) { } }; static void S_apply(node_type &node, const fixed_operator_type &op, const size_type length) { fixed_operator_monoid::operate(structure::operation, node.value, op, length); node.lazy = fixed_operator_monoid::operation(node.lazy, op); } void M_propagate(const size_type index, const size_type length) { S_apply(M_tree[index << 1 | 0], M_tree[index].lazy, length); S_apply(M_tree[index << 1 | 1], M_tree[index].lazy, length); M_tree[index].lazy = fixed_operator_monoid::identity(); } void M_fix_change(const size_type index) { M_tree[index].value = value_monoid::operation(M_tree[index << 1 | 0].value, M_tree[index << 1 | 1].value); } void M_pushdown(const size_type index) { const size_type lsb = bit_ctzr(index); for (size_type story = bit_width(index); story != lsb; --story) { M_propagate(index >> story, 1 << (story - 1)); } } void M_pullup(size_type index) { index >>= bit_ctzr(index); while (index != 1) { index >>= 1; M_fix_change(index); } } std::vector<node_type> M_tree; public: lazy_propagation_segment_tree() = default; explicit lazy_propagation_segment_tree(const size_type size) { initialize(size); } template <class InputIterator> explicit lazy_propagation_segment_tree(InputIterator first, InputIterator last) { construct(first, last); } void initialize(const size_type size) { clear(); M_tree.assign(size << 1, node_type()); } template <class InputIterator> void construct(InputIterator first, InputIterator last) { clear(); const size_type size = std::distance(first, last); M_tree.reserve(size << 1); M_tree.assign(size, node_type()); for (; first != last; ++first) { M_tree.emplace_back(*first, fixed_operator_monoid::identity()); } for (size_type index = size - 1; index != 0; --index) { M_fix_change(index); } } value_type fold(size_type first, size_type last) { assert(first <= last); assert(last <= size()); first += size(); last += size(); M_pushdown(first); M_pushdown(last); value_type fold_l = value_monoid::identity(); value_type fold_r = value_monoid::identity(); while (first != last) { if (first & 1) { fold_l = value_monoid::operation(fold_l, M_tree[first].value); ++first; } if (last & 1) { --last; fold_r = value_monoid::operation(M_tree[last].value, fold_r); } first >>= 1; last >>= 1; } return value_monoid::operation(fold_l, fold_r); } void operate(size_type first, size_type last, const operator_type &op_) { assert(first <= last); assert(last <= size()); const auto op = fixed_operator_monoid::convert(op_); first += size(); last += size(); M_pushdown(first); M_pushdown(last); const size_type first_c = first; const size_type last_c = last; for (size_type story = 0; first != last; ++story) { if (first & 1) { S_apply(M_tree[first], op, 1 << story); ++first; } if (last & 1) { --last; S_apply(M_tree[last], op, 1 << story); } first >>= 1; last >>= 1; } M_pullup(first_c); M_pullup(last_c); } void assign(size_type index, const value_type &val) { assert(index < size()); index += size(); for (size_type story = bit_width(index); story != 0; --story) { M_propagate(index >> story, 1 << (story - 1)); } M_tree[index].value = val; M_tree[index].lazy = fixed_operator_monoid::identity(); while (index != 1) { index >>= 1; M_fix_change(index); } } template <bool ToRight = true, class Constraint, std::enable_if_t<ToRight>* = nullptr> size_type satisfies(const size_type left, Constraint &&func) { assert(left <= size()); if (func(value_monoid::identity())) return left; size_type first = left + size(); size_type last = 2 * size(); M_pushdown(first); M_pushdown(last); const size_type last_c = last; value_type fold = value_monoid::identity(); const auto try_merge = [&](const size_type index) { value_type tmp = value_monoid::operation(fold, M_tree[index].value); if (func(tmp)) return true; fold = std::move(tmp); return false; }; const auto subtree = [&](size_type index, size_type story) { while (index < size()) { M_propagate(index, 1 << (story - 1)); index <<= 1; if (!try_merge(index)) ++index; --story; } return index - size() + 1; }; size_type story = 0; while (first < last) { if (first & 1) { if (try_merge(first)) return subtree(first, story); ++first; } first >>= 1; last >>= 1; ++story; } while (story--) { last = last_c >> story; if (last & 1) { --last; if (try_merge(last)) return subtree(last, story); } } return size() + 1; } template <bool ToRight = true, class Constraint, std::enable_if_t<!ToRight>* = nullptr> size_type satisfies(const size_type right, Constraint &&func) { assert(right <= size()); if (func(value_monoid::identity())) return right; size_type first = size(); size_type last = right + size(); M_pushdown(first); M_pushdown(last); const size_type first_c = first; value_type fold = value_monoid::identity(); const auto try_merge = [&](const size_type index) { value_type tmp = value_monoid::operation(M_tree[index].value, fold); if (func(tmp)) return true; fold = std::move(tmp); return false; }; const auto subtree = [&](size_type index, size_type story) { while (index < size()) { M_propagate(index, 1 << (story - 1)); index <<= 1; if (try_merge(index + 1)) ++index; --story; } return index - size(); }; size_type story = 0; while (first < last) { if (first & 1) ++first; if (last & 1) { --last; if (try_merge(last)) return subtree(last, story); } first >>= 1; last >>= 1; ++story; } const size_type cover = bit_cover(first_c); while (story--) { first = (cover >> story) - ((cover - first_c) >> story); if (first & 1) { if (try_merge(first)) return subtree(first, story); } } return size_type(-1); } void clear() { M_tree.clear(); M_tree.shrink_to_fit(); } size_type size() const { return M_tree.size() >> 1; } }; /** * @title Lazy Propagation Segment Tree */ #line 18 "main.cpp" using i32 = std::int32_t; using i64 = std::int64_t; using u32 = std::uint32_t; using u64 = std::uint64_t; using isize = std::ptrdiff_t; using usize = std::size_t; constexpr i32 inf32 = (u32) ~0 >> 2; constexpr i64 inf64 = (u64) ~0 >> 2; template <class T> using Vec = std::vector<T>; struct lst_monoid { struct value_structure { using type = i64; static type identity() { return 0; } static type operation(const type& v1, const type& v2) { return v1 + v2; } }; struct operator_structure { using type = i64; static type identity() { return 0; } static type operation(const type& v1, const type& v2) { return v1 + v2; } }; static typename value_structure::type operation( const typename value_structure::type &val, const typename operator_structure::type &op, const size_t length = 1) { return val + op * length; } }; int main() { std::ios_base::sync_with_stdio(false); std::cin.tie(nullptr); usize N, Q; std::cin >> N >> Q; Vec<i64> S(N); for (auto &x: S) { std::cin >> x; } Vec<usize> left(N); { std::stack<std::pair<i64, usize>> stack; stack.emplace(inf64, 0); for (auto i: range(0, N)) { while (stack.top().first <= S[i]) { stack.pop(); } left[i] = stack.top().second; stack.emplace(S[i], i + N); } } Vec<usize> right(N); { std::stack<std::pair<i64, usize>> stack; stack.emplace(inf64, 2 * N); for (auto i: rev(range(0, N))) { while (stack.top().first < S[i]) { stack.pop(); } right[i] = stack.top().second; stack.emplace(S[i], i + N); } } Vec<Vec<std::pair<usize, i64>>> ops1(N), ops2(N); const auto add = [&](const usize l, const usize r, const i64 x) { ops1[0].emplace_back(l, x); ops2[0].emplace_back(r, -x); if (r - l < N) { ops1[r - l].emplace_back(l, -x); ops2[r - l].emplace_back(r, x); } }; for (auto i: range(0, N)) { add(left[i] + 1, right[i], S[i]); add(left[i] + 1, i + N, -S[i]); add(i + 1 + N, right[i], -S[i]); } Vec<Vec<std::tuple<usize, usize, usize>>> qs1(N), qs2(N); for (auto i: range(0, Q)) { usize t, l, r; std::cin >> t >> l >> r; if (t == N) { t = N - 1; } l += N - 1; r += N; qs1[t].emplace_back(i, l - t, r - t); qs2[t].emplace_back(i, l, r); } lazy_propagation_segment_tree<lst_monoid> seg1(2 * N), seg2(2 * N); Vec<i64> ans(Q); for (auto i: range(0, N)) { for (const auto [k, x]: ops1[i]) { seg1.operate(k, 2 * N, x); } for (const auto [k, x]: ops2[i]) { seg2.operate(k, 2 * N, x); } for (const auto [k, l, r]: qs1[i]) { ans[k] += seg1.fold(l, r); } for (const auto [k, l, r]: qs2[i]) { ans[k] += seg2.fold(l, r); } } for (const auto x: ans) { std::cout << x << '\n'; } return 0; }
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...