Submission #363823

# Submission time Handle Problem Language Result Execution time Memory
363823 2021-02-07T10:34:01 Z KoD Fire (JOI20_ho_t5) C++17
1 / 100
1000 ms 109756 KB
#line 1 "main.cpp"

/**
 * @title Template
 */

#include <iostream>
#include <algorithm>
#include <utility>
#include <numeric>
#include <vector>
#include <array>
#include <cassert>
#include <stack>

#line 2 "/Users/kodamankod/Desktop/cpp_programming/Library/other/range.cpp"

#line 4 "/Users/kodamankod/Desktop/cpp_programming/Library/other/range.cpp"

class range {
  struct iter {
    std::size_t itr;
    constexpr iter(std::size_t pos) noexcept: itr(pos) { }
    constexpr void operator ++ () noexcept { ++itr; }
    constexpr bool operator != (iter other) const noexcept { return itr != other.itr; }
    constexpr std::size_t operator * () const noexcept { return itr; }
  };

  struct reviter {
    std::size_t itr;
    constexpr reviter(std::size_t pos) noexcept: itr(pos) { }
    constexpr void operator ++ () noexcept { --itr; }
    constexpr bool operator != (reviter other) const noexcept { return itr != other.itr; }
    constexpr std::size_t operator * () const noexcept { return itr; }
  };

  const iter first, last;

public:
  constexpr range(std::size_t first, std::size_t last) noexcept: first(first), last(std::max(first, last)) { }
  constexpr iter begin() const noexcept { return first; }
  constexpr iter end() const noexcept { return last; }
  constexpr reviter rbegin() const noexcept { return reviter(*last - 1); } 
  constexpr reviter rend() const noexcept { return reviter(*first - 1); } 
};

/**
 * @title Range
 */
#line 2 "/Users/kodamankod/Desktop/cpp_programming/Library/other/rev.cpp"

#include <type_traits>
#include <iterator>
#line 6 "/Users/kodamankod/Desktop/cpp_programming/Library/other/rev.cpp"

template <class T>
class rev_impl {
public:
  using iterator = decltype(std::rbegin(std::declval<T>()));

private:
  const iterator M_begin;
  const iterator M_end;

public:
  constexpr rev_impl(T &&cont) noexcept: M_begin(std::rbegin(cont)), M_end(std::rend(cont)) { }
  constexpr iterator begin() const noexcept { return M_begin; }
  constexpr iterator end() const noexcept { return M_end; }
};

template <class T>
constexpr decltype(auto) rev(T &&cont) {
  return rev_impl<T>(std::forward<T>(cont));
}

/**
 * @title Reverser
 */
#line 2 "/Users/kodamankod/Desktop/cpp_programming/Library/container/lazy_propagation_segment_tree.cpp"

#line 2 "/Users/kodamankod/Desktop/cpp_programming/Library/other/bit_operation.cpp"

#include <cstddef>
#include <cstdint>

constexpr size_t bit_ppc(const uint64_t x) { return __builtin_popcountll(x); }
constexpr size_t bit_ctzr(const uint64_t x) { return x == 0 ? 64 : __builtin_ctzll(x); }
constexpr size_t bit_ctzl(const uint64_t x) { return x == 0 ? 64 : __builtin_clzll(x); }
constexpr size_t bit_width(const uint64_t x) { return 64 - bit_ctzl(x); }
constexpr uint64_t bit_msb(const uint64_t x) { return x == 0 ? 0 : uint64_t(1) << (bit_width(x) - 1); }
constexpr uint64_t bit_lsb(const uint64_t x) { return x & (-x); }
constexpr uint64_t bit_cover(const uint64_t x) { return x == 0 ? 0 : bit_msb(2 * x - 1); }

constexpr uint64_t bit_rev(uint64_t x) {
  x = ((x >> 1) & 0x5555555555555555) | ((x & 0x5555555555555555) << 1);
  x = ((x >> 2) & 0x3333333333333333) | ((x & 0x3333333333333333) << 2);
  x = ((x >> 4) & 0x0F0F0F0F0F0F0F0F) | ((x & 0x0F0F0F0F0F0F0F0F) << 4);
  x = ((x >> 8) & 0x00FF00FF00FF00FF) | ((x & 0x00FF00FF00FF00FF) << 8);
  x = ((x >> 16) & 0x0000FFFF0000FFFF) | ((x & 0x0000FFFF0000FFFF) << 16);
  x = (x >> 32) | (x << 32);
  return x;
}

/**
 * @title Bit Operations
 */
#line 2 "/Users/kodamankod/Desktop/cpp_programming/Library/other/monoid.cpp"

#include <type_traits>
#line 5 "/Users/kodamankod/Desktop/cpp_programming/Library/other/monoid.cpp"
#include <stdexcept>

template <class T, class = void>
class has_identity: public std::false_type { };

template <class T>
class has_identity<T, typename std::conditional<false, decltype(T::identity()), void>::type>: public std::true_type { };

template <class T>
constexpr typename std::enable_if<has_identity<T>::value, typename T::type>::type empty_exception() {
  return T::identity();
}
template <class T>
[[noreturn]] typename std::enable_if<!has_identity<T>::value, typename T::type>::type empty_exception() {
  throw std::runtime_error("type T has no identity");
}

template <class T, bool HasIdentity>
class fixed_monoid_impl: public T {
public:
  using type = typename T::type;

  static constexpr type convert(const type &value) { return value; }
  static constexpr type revert(const type &value) { return value; }

  template <class Mapping, class Value, class... Args>
  static constexpr void operate(Mapping &&func, Value &value, const type &op, Args&&... args) {
    value = func(value, op, std::forward<Args>(args)...);
  }
  template <class Constraint>
  static constexpr bool satisfies(Constraint &&func, const type &value) {
    return func(value);
  }
};

template <class T>
class fixed_monoid_impl<T, false> {
public:
  class type {
  public:
    typename T::type value;
    bool state;
  
    explicit constexpr type(): value(typename T::type { }), state(false) { }
    explicit constexpr type(const typename T::type &value): value(value), state(true) { }
  };

  static constexpr type convert(const typename T::type &value) { return type(value); }
  static constexpr typename T::type revert(const type &value) { 
    if (!value.state) throw std::runtime_error("attempted to revert identity to non-monoid"); 
    return value.value; 
  }

  static constexpr type identity() { return type(); }
  static constexpr type operation(const type &v1, const type &v2) {
    if (!v1.state) return v2;
    if (!v2.state) return v1;
    return type(T::operation(v1.value, v2.value));
  }

  template <class Mapping, class Value, class... Args>
  static constexpr void operate(Mapping &&func, Value &value, const type &op, Args&&... args) {
    if (!op.state) return;
    value = func(value, op.value, std::forward<Args>(args)...);
  }
  template <class Constraint>
  static constexpr bool satisfies(Constraint &&func, const type &value) {
    if (!value.state) return false;
    return func(value.value);
  }
};

template <class T>
using fixed_monoid = fixed_monoid_impl<T, has_identity<T>::value>;

/**
 * @title Monoid Utility
 */
#line 5 "/Users/kodamankod/Desktop/cpp_programming/Library/container/lazy_propagation_segment_tree.cpp"

#line 11 "/Users/kodamankod/Desktop/cpp_programming/Library/container/lazy_propagation_segment_tree.cpp"

template <class CombinedMonoid>
class lazy_propagation_segment_tree {
public:
  using structure       = CombinedMonoid;
  using value_monoid    = typename CombinedMonoid::value_structure;
  using operator_monoid = typename CombinedMonoid::operator_structure;
  using value_type      = typename CombinedMonoid::value_structure::type;
  using operator_type   = typename CombinedMonoid::operator_structure::type;
  using size_type       = size_t;

private:
  using fixed_operator_monoid = fixed_monoid<operator_monoid>;
  using fixed_operator_type   = typename fixed_operator_monoid::type;

  class node_type {
  public:
    value_type    value;
    fixed_operator_type lazy;
    node_type(
      const value_type    &value = value_monoid::identity(),
      const fixed_operator_type &lazy = fixed_operator_monoid::identity()
    ): value(value), lazy(lazy) { }
  };

  static void S_apply(node_type &node, const fixed_operator_type &op, const size_type length) {
    fixed_operator_monoid::operate(structure::operation, node.value, op, length);
    node.lazy = fixed_operator_monoid::operation(node.lazy, op);
  }

  void M_propagate(const size_type index, const size_type length) {
    S_apply(M_tree[index << 1 | 0], M_tree[index].lazy, length);
    S_apply(M_tree[index << 1 | 1], M_tree[index].lazy, length);
    M_tree[index].lazy = fixed_operator_monoid::identity();
  }
  void M_fix_change(const size_type index) {
    M_tree[index].value = 
      value_monoid::operation(M_tree[index << 1 | 0].value, M_tree[index << 1 | 1].value);
  }

  void M_pushdown(const size_type index) {
    const size_type lsb = bit_ctzr(index);
    for (size_type story = bit_width(index); story != lsb; --story) {
      M_propagate(index >> story, 1 << (story - 1));
    }
  }
  void M_pullup(size_type index) {
    index >>= bit_ctzr(index);
    while (index != 1) {
      index >>= 1;
      M_fix_change(index);
    }
  }

  std::vector<node_type> M_tree;

public:
  lazy_propagation_segment_tree() = default;
  explicit lazy_propagation_segment_tree(const size_type size) { initialize(size); }
  template <class InputIterator>
  explicit lazy_propagation_segment_tree(InputIterator first, InputIterator last) { construct(first, last); }

  void initialize(const size_type size) {
    clear();
    M_tree.assign(size << 1, node_type());
  }

  template <class InputIterator>
  void construct(InputIterator first, InputIterator last) {
    clear();
    const size_type size = std::distance(first, last);
    M_tree.reserve(size << 1);
    M_tree.assign(size, node_type());
    for (; first != last; ++first) {
      M_tree.emplace_back(*first, fixed_operator_monoid::identity());
    }
    for (size_type index = size - 1; index != 0; --index) {
      M_fix_change(index);
    }
  }

  value_type fold(size_type first, size_type last) {
    assert(first <= last);
    assert(last <= size());
    first += size();
    last  += size();
    M_pushdown(first);
    M_pushdown(last);
    value_type fold_l = value_monoid::identity();
    value_type fold_r = value_monoid::identity();
    while (first != last) {
      if (first & 1) {
        fold_l = value_monoid::operation(fold_l, M_tree[first].value);
        ++first;
      }
      if (last & 1) {
        --last;
        fold_r = value_monoid::operation(M_tree[last].value, fold_r);
      }
      first >>= 1;
      last  >>= 1;
    }
    return value_monoid::operation(fold_l, fold_r);
  }

  void operate(size_type first, size_type last, const operator_type &op_) {
    assert(first <= last);
    assert(last <= size());
    const auto op = fixed_operator_monoid::convert(op_);
    first += size();
    last  += size();
    M_pushdown(first);
    M_pushdown(last);
    const size_type first_c = first;
    const size_type last_c  = last;
    for (size_type story = 0; first != last; ++story) {
      if (first & 1) {
        S_apply(M_tree[first], op, 1 << story);
        ++first;
      }
      if (last & 1) {
        --last;
        S_apply(M_tree[last], op, 1 << story);
      }
      first >>= 1;
      last  >>= 1;
    }
    M_pullup(first_c);
    M_pullup(last_c);
  }

  void assign(size_type index, const value_type &val) {
    assert(index < size());
    index += size();
    for (size_type story = bit_width(index); story != 0; --story) {
      M_propagate(index >> story, 1 << (story - 1));
    }
    M_tree[index].value = val;
    M_tree[index].lazy  = fixed_operator_monoid::identity();
    while (index != 1) {
      index >>= 1;
      M_fix_change(index);
    }
  }

  template <bool ToRight = true, class Constraint, std::enable_if_t<ToRight>* = nullptr> 
  size_type satisfies(const size_type left, Constraint &&func) {
    assert(left <= size());
    if (func(value_monoid::identity())) return left;
    size_type first = left + size();
    size_type last = 2 * size();
    M_pushdown(first);
    M_pushdown(last);
    const size_type last_c = last;
    value_type fold = value_monoid::identity();
    const auto try_merge = [&](const size_type index) {
      value_type tmp = value_monoid::operation(fold, M_tree[index].value);
      if (func(tmp)) return true;
      fold = std::move(tmp);
      return false;
    };
    const auto subtree = [&](size_type index, size_type story) {
      while (index < size()) {
        M_propagate(index, 1 << (story - 1));
        index <<= 1;
        if (!try_merge(index)) ++index;
        --story;
      }
      return index - size() + 1;
    };
    size_type story = 0;
    while (first < last) {
      if (first & 1) {
        if (try_merge(first)) return subtree(first, story);
        ++first;
      }
      first >>= 1;
      last >>= 1;
      ++story;
    }
    while (story--) {
      last = last_c >> story;
      if (last & 1) {
        --last;
        if (try_merge(last)) return subtree(last, story);
      }
    }
    return size() + 1;
  }

  template <bool ToRight = true, class Constraint, std::enable_if_t<!ToRight>* = nullptr> 
  size_type satisfies(const size_type right, Constraint &&func) {
    assert(right <= size());
    if (func(value_monoid::identity())) return right;
    size_type first = size();
    size_type last = right + size();
    M_pushdown(first);
    M_pushdown(last);
    const size_type first_c = first;
    value_type fold = value_monoid::identity();
    const auto try_merge = [&](const size_type index) {
      value_type tmp = value_monoid::operation(M_tree[index].value, fold);
      if (func(tmp)) return true;
      fold = std::move(tmp);
      return false;
    };
    const auto subtree = [&](size_type index, size_type story) {
      while (index < size()) {
        M_propagate(index, 1 << (story - 1));
        index <<= 1;
        if (try_merge(index + 1)) ++index;
        --story;
      }
      return index - size();
    };
    size_type story = 0;
    while (first < last) {
      if (first & 1) ++first;
      if (last & 1) {
        --last;
        if (try_merge(last)) return subtree(last, story);
      }
      first >>= 1;
      last >>= 1;
      ++story;
    }
    const size_type cover = bit_cover(first_c);
    while (story--) {
      first = (cover >> story) - ((cover - first_c) >> story);
      if (first & 1) {
        if (try_merge(first)) return subtree(first, story);
      }
    }
    return size_type(-1);
  }

  void clear() {
    M_tree.clear();
    M_tree.shrink_to_fit();
  }
  size_type size() const { 
    return M_tree.size() >> 1;
  }
};

/**
 * @title Lazy Propagation Segment Tree
 */
#line 18 "main.cpp"

using i32 = std::int32_t;
using i64 = std::int64_t;
using u32 = std::uint32_t;
using u64 = std::uint64_t;
using isize = std::ptrdiff_t;
using usize = std::size_t;

constexpr i32 inf32 = (u32) ~0 >> 2;
constexpr i64 inf64 = (u64) ~0 >> 2;

template <class T>
using Vec = std::vector<T>;

struct lst_monoid {
  struct value_structure {
    using type = i64;
    static type identity() { return 0; }
    static type operation(const type& v1, const type& v2) { 
      return v1 + v2;
    }
  };
  struct operator_structure {
    using type = i64;
    static type identity() { return 0; }
    static type operation(const type& v1, const type& v2) { 
      return v1 + v2;
    }
  };
  static typename value_structure::type operation(
    const typename value_structure::type    &val,
    const typename operator_structure::type &op,
    const size_t length = 1) {
    return val + op * length;
  }
};

int main() {
  std::ios_base::sync_with_stdio(false);
  std::cin.tie(nullptr);
  usize N, Q;
  std::cin >> N >> Q;
  Vec<i64> S(N);
  for (auto &x: S) {
    std::cin >> x;
  }
  Vec<usize> left(N);
  {
    std::stack<std::pair<i64, usize>> stack;
    stack.emplace(inf64, 0);
    for (auto i: range(0, N)) {
      while (stack.top().first <= S[i]) {
        stack.pop();
      }
      left[i] = stack.top().second;
      stack.emplace(S[i], i + N);
    }
  }
  Vec<usize> right(N);
  {
    std::stack<std::pair<i64, usize>> stack;
    stack.emplace(inf64, 2 * N);
    for (auto i: rev(range(0, N))) {
      while (stack.top().first < S[i]) {
        stack.pop();
      }
      right[i] = stack.top().second;
      stack.emplace(S[i], i + N);
    }
  }
  Vec<Vec<std::pair<usize, i64>>> ops1(N), ops2(N);
  const auto add = [&](const usize l, const usize r, const i64 x) {
    ops1[0].emplace_back(l, x);
    ops2[0].emplace_back(r, -x);
    if (r - l < N) {
      ops1[r - l].emplace_back(l, -x);
      ops2[r - l].emplace_back(r, x);
    }
  };
  for (auto i: range(0, N)) {
    add(left[i] + 1, right[i], S[i]);
    add(left[i] + 1, i + N, -S[i]);
    add(i + 1 + N, right[i], -S[i]);
  }
  Vec<Vec<std::tuple<usize, usize, usize>>> qs1(N), qs2(N);
  for (auto i: range(0, Q)) {
    usize t, l, r;
    std::cin >> t >> l >> r;
    if (t == N) {
      t = N - 1;
    }
    l += N - 1;
    r += N;
    qs1[t].emplace_back(i, l - t, r - t);
    qs2[t].emplace_back(i, l, r);
  }
  lazy_propagation_segment_tree<lst_monoid> seg1(2 * N), seg2(2 * N);
  Vec<i64> ans(Q);
  for (auto i: range(0, N)) {
    for (const auto [k, x]: ops1[i]) {
      seg1.operate(k, 2 * N, x);
    }    
    for (const auto [k, x]: ops2[i]) {
      seg2.operate(k, 2 * N, x);
    }
    for (const auto [k, l, r]: qs1[i]) {
      ans[k] += seg1.fold(l, r);
    }
    for (const auto [k, l, r]: qs2[i]) {
      ans[k] += seg2.fold(l, r);
    }
  }
  for (const auto x: ans) {
    std::cout << x << '\n';
  }
  return 0;
}
# Verdict Execution time Memory Grader output
1 Correct 1 ms 364 KB Output is correct
2 Correct 2 ms 492 KB Output is correct
3 Correct 1 ms 492 KB Output is correct
4 Correct 2 ms 492 KB Output is correct
5 Correct 1 ms 492 KB Output is correct
6 Correct 1 ms 492 KB Output is correct
7 Correct 1 ms 492 KB Output is correct
8 Correct 1 ms 492 KB Output is correct
9 Correct 1 ms 392 KB Output is correct
10 Correct 1 ms 492 KB Output is correct
11 Correct 1 ms 492 KB Output is correct
12 Correct 1 ms 492 KB Output is correct
13 Correct 1 ms 492 KB Output is correct
14 Correct 1 ms 492 KB Output is correct
15 Correct 1 ms 492 KB Output is correct
16 Correct 2 ms 492 KB Output is correct
17 Correct 1 ms 492 KB Output is correct
18 Correct 1 ms 492 KB Output is correct
19 Correct 1 ms 640 KB Output is correct
20 Correct 1 ms 492 KB Output is correct
21 Correct 1 ms 492 KB Output is correct
22 Correct 1 ms 512 KB Output is correct
23 Correct 1 ms 492 KB Output is correct
24 Correct 1 ms 492 KB Output is correct
25 Correct 1 ms 492 KB Output is correct
26 Correct 1 ms 492 KB Output is correct
27 Correct 1 ms 492 KB Output is correct
28 Correct 1 ms 492 KB Output is correct
29 Correct 1 ms 492 KB Output is correct
30 Correct 1 ms 492 KB Output is correct
31 Correct 1 ms 492 KB Output is correct
32 Correct 1 ms 524 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 364 KB Output is correct
2 Execution timed out 1039 ms 109756 KB Time limit exceeded
3 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 1 ms 364 KB Output is correct
2 Execution timed out 1082 ms 105704 KB Time limit exceeded
3 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Execution timed out 1062 ms 97500 KB Time limit exceeded
2 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 1 ms 364 KB Output is correct
2 Correct 2 ms 492 KB Output is correct
3 Correct 1 ms 492 KB Output is correct
4 Correct 2 ms 492 KB Output is correct
5 Correct 1 ms 492 KB Output is correct
6 Correct 1 ms 492 KB Output is correct
7 Correct 1 ms 492 KB Output is correct
8 Correct 1 ms 492 KB Output is correct
9 Correct 1 ms 392 KB Output is correct
10 Correct 1 ms 492 KB Output is correct
11 Correct 1 ms 492 KB Output is correct
12 Correct 1 ms 492 KB Output is correct
13 Correct 1 ms 492 KB Output is correct
14 Correct 1 ms 492 KB Output is correct
15 Correct 1 ms 492 KB Output is correct
16 Correct 2 ms 492 KB Output is correct
17 Correct 1 ms 492 KB Output is correct
18 Correct 1 ms 492 KB Output is correct
19 Correct 1 ms 640 KB Output is correct
20 Correct 1 ms 492 KB Output is correct
21 Correct 1 ms 492 KB Output is correct
22 Correct 1 ms 512 KB Output is correct
23 Correct 1 ms 492 KB Output is correct
24 Correct 1 ms 492 KB Output is correct
25 Correct 1 ms 492 KB Output is correct
26 Correct 1 ms 492 KB Output is correct
27 Correct 1 ms 492 KB Output is correct
28 Correct 1 ms 492 KB Output is correct
29 Correct 1 ms 492 KB Output is correct
30 Correct 1 ms 492 KB Output is correct
31 Correct 1 ms 492 KB Output is correct
32 Correct 1 ms 524 KB Output is correct
33 Execution timed out 1039 ms 109756 KB Time limit exceeded
34 Halted 0 ms 0 KB -