#pragma GCC target ("avx")
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
#define _USE_MATH_DEFINES
#include<iostream>
#include<string>
#include<queue>
#include<cmath>
#include<map>
#include<set>
#include<list>
#include<iomanip>
#include<vector>
#include<random>
#include<functional>
#include<algorithm>
#include<stack>
#include<cstdio>
#include<cstring>
#include<bitset>
#include<unordered_map>
#include<climits>
#include<fstream>
#include<complex>
#include<time.h>
#include<cassert>
#include<functional>
#include<numeric>
#include<tuple>
using namespace std;
using ll = long long;
using ld = long double;
using H = pair<ll, ll>;
using P = pair<ll, H>;
using vi = vector<ll>;
#define all(a) (a).begin(),(a).end()
#define fs first
#define sc second
#define xx first
#define yy second.first
#define zz second.second
#define Q(i,j,k) mkp(i,mkp(j,k))
#define rng(i,s,n) for(ll i = (s) ; i < (n) ; i++)
#define rep(i,n) rng(i, 0, (n))
#define mkp make_pair
#define vec vector
#define pb emplace_back
#define siz(a) int(a.size())
#define crdcomp(b) sort(all((b)));(b).erase(unique(all((b))),(b).end())
#define getidx(b,i) (lower_bound(all(b),(i))-(b).begin())
#define ssp(i,n) (i==(ll)(n)-1?"\n":" ")
#define ctoi(c) (int)(c-'0')
#define itoc(c) (char)(c+'0')
#define cyes printf("Yes\n")
#define cno printf("No\n")
#define cdf(n) for(int quetimes_=(n);quetimes_>0;quetimes_--)
#define gcj printf("Case #%lld: ",qq123_+1)
#define readv(a,n) a.resize(n,0);rep(i,(n)) a[i]=read()
#define found(a,x) (a.find(x)!=a.end())
constexpr ll mod = (ll)1e9 + 7;
constexpr ll Mod = 998244353;
constexpr ld EPS = 1e-10;
constexpr ll inf = (ll)3 * 1e18;
constexpr int Inf = (ll)15 * 1e8;
constexpr int dx[] = { -1,1,0,0 }, dy[] = { 0,0,-1,1 };
template<class T>bool chmax(T& a, const T& b) { if (a < b) { a = b; return 1; } return 0; }
template<class T>bool chmin(T& a, const T& b) { if (b < a) { a = b; return 1; } return 0; }
ll read() { ll u, k = scanf("%lld", &u); return u; }
string reads() { string s; cin >> s; return s; }
H readh(short g = 0) { H u; int k = scanf("%lld %lld", &u.fs, &u.sc); if (g == 1) u.fs--, u.sc--; if (g == 2) u.fs--; return u; }
bool ina(H t, int h, int w) { return 0 <= t.fs && t.fs < h && 0 <= t.sc && t.sc < w; }
bool ina(int t, int l, int r) { return l <= t && t < r; }
ll gcd(ll i, ll j) { return j ? gcd(j, i % j) : i; }
ll ppc(ll x) {
int sum = 0; for (int i = 0; i < 60; i++)if ((1ll << i) & x) sum++;
return sum;
}
template<typename T>
void fin(T x) { cout << x << endl; exit(0); }
template<typename T>
class csum {
vec<T> v;
public:
csum(vec<T>& a) :v(a) { build(); }
csum() {}
csum(int sz) { init(sz); }
void init(int sz) { v = vector<T>(sz + 1, 0); }
void init(vec<T>& a) { v = a; build(); }
void build() {
for (int i = 1; i < v.size(); i++) v[i] += v[i - 1];
}
void add(int l, int r, T x) {
v[l] += x;
v[r] -= x;
}//[l,r)
void add(int t, T x) {
v[t] += x;
}//[l,r)
//[l,r]
T a(int l, int r) {
if (r < l) return 0;
return v[r] - (l == 0 ? 0 : v[l - 1]);
}
//[l,r)
T b(int l, int r) {
return a(l, r - 1);
}
T a(pair<int, int>t) {
return a(t.first, t.second);
}
T b(pair<int, int>t) {
return b(t.first, t.second);
}
T operator[](int x)const {
return v[x];
}
};
template<ll mod>
class modint {
public:ll v;
modint(ll v = 0) { s(v % mod + mod); }
constexpr static int fn_ = (ll)2e6 + 5;
static vector<modint>fact, comp;
modint pow(ll x) const {
modint b(v), c(1);
while (x) {
if (x & 1) c *= b;
b *= b;
x >>= 1;
}
return c;
}
inline modint& s(int vv) {
v = vv < mod ? vv : vv - mod;
return *this;
}
inline modint inv()const { return pow(mod - 2); }
inline modint operator-()const { return modint() - *this; }
inline modint& operator+=(const modint b) { return s(v + b.v); }
inline modint& operator-=(const modint b) { return s(v + mod - b.v); }
inline modint& operator*=(const modint b) { v = v * b.v % mod; return *this; }
inline modint& operator/=(const modint b) { v = v * b.inv().v % mod; return *this; }
inline modint operator+(const modint& b) const { return modint(v) += b; }
inline modint operator-(const modint& b) const { return modint(v) -= b; }
inline modint operator*(const modint& b) const { return modint(v) *= b; }
inline modint operator/(const modint& b) const { return modint(v) /= b; }
friend ostream& operator<<(ostream& os, const modint& m) {
return os << m.v;
}
friend istream& operator>>(istream& is, modint& m) {
int x; is >> x; m = modint(x);
return is;
}
bool operator<(const modint& r)const { return v < r.v; }
bool operator>(const modint& r)const { return v > r.v; }
bool operator<=(const modint& r)const { return v <= r.v; }
bool operator>=(const modint& r)const { return v >= r.v; }
bool operator==(const modint& r)const { return v == r.v; }
bool operator!=(const modint& r)const { return v != r.v; }
explicit operator bool()const { return v; }
explicit operator int()const { return v; }
modint comb(modint k) {
if (k > *this) return modint();
if (fact.empty()) combinit();
if (v >= fn_) {
if (k > *this - k) k = *this - k;
modint tmp(1);
for (int i = v; i >= v - k.v + 1; i--) tmp *= modint(i);
return tmp * comp[k.v];
}
return fact[v] * comp[k.v] * comp[v - k.v];
}//nCk
modint perm(modint k) {
if (k > *this) return modint();
if (fact.empty()) combinit();
if (v >= fn_) {
modint tmp(1);
for (int i = v; i >= v - k.v + 1; i--) tmp *= modint(i);
return tmp;
}
return fact[v] * comp[v - k.v];
}//nPk
static void combinit() {
fact.assign(fn_, modint());
fact[0] = 1;
for (int i = 1; i < fn_; i++) fact[i] = fact[i - 1] * modint(i);
comp.assign(fn_, modint());
comp[fn_ - 1] = fact[fn_ - 1].inv();
for (int i = fn_ - 2; i >= 0; i--) comp[i] = comp[i + 1] * modint(i + 1);
}
};
using mint = modint<ll(1e9 + 7)>; template<>vec<mint> mint::fact = vec<mint>(); template<>vec<mint> mint::comp = vec<mint>();
//--------------------------------------------------------------
//--------------------------------------------------------------
int n, l;
mint dp[101][111][1001][3];
signed main() {
cin >> n >> l;
vi a; readv(a, n);
sort(all(a));
if (n == 1) fin(1);
dp[0][0][0][0] = 1;
rng(i, 0, n)rng(j, 0, n + 1)rep(k, l + 1)rep(z, 3) {
int val = (i == 0 ? 0 : a[i] - a[i - 1]);
int k2 = k + (j * 2 - z) * val;
if (j * 2 - z<0 || k2 > l) continue;
dp[i + 1][j + 1][k2][z] += dp[i][j][k][z] * max(0ll, j + 1 - z);
dp[i + 1][j + 1][k2][z + 1] += dp[i][j][k][z] * (2 - z);
if (j > 0) {
dp[i + 1][j][k2][z] += dp[i][j][k][z] * max(0ll, j * 2 - z);
dp[i + 1][j][k2][z + 1] += dp[i][j][k][z] * (2 - z);
}
if (j > 1) {
dp[i + 1][j - 1][k2][z] += dp[i][j][k][z] * (j - 1);
}
}
mint ans = 0;
rep(i, l + 1) ans += dp[n][1][i][2];
cout << ans << endl;
}
Compilation message
skyscraper.cpp: In function 'll read()':
skyscraper.cpp:69:19: warning: unused variable 'k' [-Wunused-variable]
69 | ll read() { ll u, k = scanf("%lld", &u); return u; }
| ^
skyscraper.cpp: In function 'H readh(short int)':
skyscraper.cpp:71:33: warning: unused variable 'k' [-Wunused-variable]
71 | H readh(short g = 0) { H u; int k = scanf("%lld %lld", &u.fs, &u.sc); if (g == 1) u.fs--, u.sc--; if (g == 2) u.fs--; return u; }
| ^
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
189 ms |
263788 KB |
Output is correct |
2 |
Correct |
189 ms |
263916 KB |
Output is correct |
3 |
Correct |
188 ms |
263928 KB |
Output is correct |
4 |
Correct |
195 ms |
263916 KB |
Output is correct |
5 |
Correct |
189 ms |
263788 KB |
Output is correct |
6 |
Correct |
196 ms |
263788 KB |
Output is correct |
7 |
Correct |
192 ms |
263788 KB |
Output is correct |
8 |
Correct |
199 ms |
263832 KB |
Output is correct |
9 |
Correct |
208 ms |
263788 KB |
Output is correct |
10 |
Correct |
190 ms |
263804 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
189 ms |
263788 KB |
Output is correct |
2 |
Correct |
196 ms |
263788 KB |
Output is correct |
3 |
Correct |
192 ms |
263916 KB |
Output is correct |
4 |
Correct |
189 ms |
263788 KB |
Output is correct |
5 |
Correct |
188 ms |
263788 KB |
Output is correct |
6 |
Correct |
190 ms |
263916 KB |
Output is correct |
7 |
Correct |
192 ms |
263868 KB |
Output is correct |
8 |
Correct |
190 ms |
263916 KB |
Output is correct |
9 |
Correct |
190 ms |
263788 KB |
Output is correct |
10 |
Correct |
188 ms |
263812 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
189 ms |
263788 KB |
Output is correct |
2 |
Correct |
189 ms |
263916 KB |
Output is correct |
3 |
Correct |
188 ms |
263928 KB |
Output is correct |
4 |
Correct |
195 ms |
263916 KB |
Output is correct |
5 |
Correct |
189 ms |
263788 KB |
Output is correct |
6 |
Correct |
196 ms |
263788 KB |
Output is correct |
7 |
Correct |
192 ms |
263788 KB |
Output is correct |
8 |
Correct |
199 ms |
263832 KB |
Output is correct |
9 |
Correct |
208 ms |
263788 KB |
Output is correct |
10 |
Correct |
190 ms |
263804 KB |
Output is correct |
11 |
Correct |
189 ms |
263788 KB |
Output is correct |
12 |
Correct |
196 ms |
263788 KB |
Output is correct |
13 |
Correct |
192 ms |
263916 KB |
Output is correct |
14 |
Correct |
189 ms |
263788 KB |
Output is correct |
15 |
Correct |
188 ms |
263788 KB |
Output is correct |
16 |
Correct |
190 ms |
263916 KB |
Output is correct |
17 |
Correct |
192 ms |
263868 KB |
Output is correct |
18 |
Correct |
190 ms |
263916 KB |
Output is correct |
19 |
Correct |
190 ms |
263788 KB |
Output is correct |
20 |
Correct |
188 ms |
263812 KB |
Output is correct |
21 |
Correct |
191 ms |
263788 KB |
Output is correct |
22 |
Correct |
564 ms |
263916 KB |
Output is correct |
23 |
Correct |
542 ms |
263788 KB |
Output is correct |
24 |
Correct |
512 ms |
263904 KB |
Output is correct |
25 |
Correct |
591 ms |
263916 KB |
Output is correct |
26 |
Correct |
509 ms |
264044 KB |
Output is correct |
27 |
Correct |
342 ms |
263788 KB |
Output is correct |
28 |
Correct |
360 ms |
263788 KB |
Output is correct |
29 |
Correct |
506 ms |
263916 KB |
Output is correct |
30 |
Correct |
546 ms |
263788 KB |
Output is correct |