Submission #357732

# Submission time Handle Problem Language Result Execution time Memory
357732 2021-01-24T14:33:25 Z KoD Cats or Dogs (JOI18_catdog) C++17
100 / 100
627 ms 27392 KB
#include "catdog.h"

#include <vector>
#include <algorithm>
#include <utility>
#include <array>

namespace Solver {
  template <class T>
  using Vec = std::vector<T>;

  constexpr int MAX = 100000;

  struct Monoid {
    static constexpr Monoid ID() { return Monoid { { 0, MAX, MAX, 0 } }; }
    std::array<std::array<long long, 2>, 2> value;

    Monoid operator + (const Monoid &other) const {
      Monoid ret{ { MAX, MAX, MAX, MAX }};
      for (int i: { 0, 1 }) {
        for (int j: { 0, 1 }) {
          for (int k: { 0, 1 }) {
            for (int l: { 0, 1 }) {
              ret.value[i][l] = std::min(ret.value[i][l], value[i][j] + other.value[k][l] + (j ^ k));
            }
          }
        }
      }
      return ret;
    }
  };

  struct Segtree {
    int size;
    Vec<Monoid> data;

    void fix(const int k) {
      data[k] = data[k << 1 | 0] + data[k << 1 | 1];
    }

    Segtree(const int n = 0): size(n), data(2 * n, Monoid::ID()) { }

    void set(int k, const std::array<long long, 2> &arr) {
      k += size;
      data[k].value[0][0] = arr[0];
      data[k].value[1][1] = arr[1];
      while (k > 1) {
        k >>= 1;
        fix(k);
      }
    }

    std::array<long long, 2> get(int r) const {
      int l = size;
      r += size;
      Monoid ml = Monoid::ID();
      Monoid mr = Monoid::ID();
      while (l < r) {
        if (l & 1) {
          ml = ml + data[l];
          l += 1;
        }
        if (r & 1) {
          r -= 1;
          mr = data[r] + mr;
        }
        l >>= 1;
        r >>= 1;
      }
      Monoid tmp = ml + mr;
      std::array<long long, 2> ret{ MAX, MAX };
      for (int i: { 0, 1 }) {
        for (int j: { 0, 1 }) {
          ret[i] = std::min(ret[i], tmp.value[i][j]);
        }
      }
      return ret;
    }
  };

  std::array<Vec<int>, MAX> graph;
  std::array<int, MAX> parent, size, head, label, state;
  std::array<Segtree, MAX> trees;
  std::array<std::array<long long, 2>, MAX> vals;

  void precalc(const int u, const int p) {
    parent[u] = p;
    size[u] = 1;
    for (const auto v: graph[u]) {
      if (v != parent[u]) {
        precalc(v, u);
        size[u] += size[v];
      }
    }
  }

  void decomp(const int u, const int h, const int l) {
    head[u] = h;
    label[u] = l;
    int c = -1;
    for (const auto v: graph[u]) {
      if (v != parent[u]) {
        if (c == -1 || size[c] < size[v]) {
          c = v;
        }
      }
    }
    if (c == -1) {
      trees[h] = Segtree(l + 1);
    }
    else {
      decomp(c, h, l + 1);
      for (const auto v: graph[u]) {
        if (v != parent[u] && v != c) {
          decomp(v, v, 0);
        }
      }
    }
  }

  long long set(int u, std::array<long long, 2> arr) {
    while (true) {
      const auto v = head[u];
      const auto cur = trees[v].get(trees[v].size);
      trees[v].set(label[u], arr);
      const auto next = trees[v].get(trees[v].size);
      if (v == 0) {
        break;
      }
      u = parent[v];
      for (int i: { 0, 1 }) {
        vals[u][i] -= std::min(cur[i], cur[i ^ 1] + 1);
        vals[u][i] += std::min(next[i], next[i ^ 1] + 1);
        arr[i] = (state[u] == 2 - i ? (long long) MAX : vals[u][i]);
      }
    }
    const auto tmp = trees[0].get(trees[0].size);
    return std::min(tmp[0], tmp[1]);
  }
}

void initialize(int N, std::vector<int> A, std::vector<int> B) {
  for (int i = 0; i < N - 1; ++i) {
    A[i] -= 1;
    B[i] -= 1;
    Solver::graph[A[i]].push_back(B[i]);
    Solver::graph[B[i]].push_back(A[i]);
  }
  Solver::precalc(0, -1);
  Solver::decomp(0, 0, 0);
}

int cat(int v) {
  using namespace Solver;
  v -= 1;
  state[v] = 1;
  return set(v, std::array<long long, 2>{ vals[v][0], MAX });
}

int dog(int v) {
  using namespace Solver;
  v -= 1;
  state[v] = 2;
  return set(v, std::array<long long, 2>{ MAX, vals[v][1] });
}

int neighbor(int v) {
  using namespace Solver;
  v -= 1;
  state[v] = 0;
  return set(v, vals[v]);
}
# Verdict Execution time Memory Grader output
1 Correct 4 ms 5888 KB Output is correct
2 Correct 4 ms 5868 KB Output is correct
3 Correct 4 ms 5868 KB Output is correct
4 Correct 4 ms 5868 KB Output is correct
5 Correct 4 ms 6016 KB Output is correct
6 Correct 4 ms 5868 KB Output is correct
7 Correct 4 ms 5868 KB Output is correct
8 Correct 4 ms 5868 KB Output is correct
9 Correct 4 ms 5868 KB Output is correct
10 Correct 4 ms 5868 KB Output is correct
11 Correct 4 ms 5868 KB Output is correct
12 Correct 4 ms 5868 KB Output is correct
13 Correct 4 ms 5888 KB Output is correct
14 Correct 4 ms 5868 KB Output is correct
15 Correct 4 ms 5888 KB Output is correct
16 Correct 4 ms 5868 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 4 ms 5888 KB Output is correct
2 Correct 4 ms 5868 KB Output is correct
3 Correct 4 ms 5868 KB Output is correct
4 Correct 4 ms 5868 KB Output is correct
5 Correct 4 ms 6016 KB Output is correct
6 Correct 4 ms 5868 KB Output is correct
7 Correct 4 ms 5868 KB Output is correct
8 Correct 4 ms 5868 KB Output is correct
9 Correct 4 ms 5868 KB Output is correct
10 Correct 4 ms 5868 KB Output is correct
11 Correct 4 ms 5868 KB Output is correct
12 Correct 4 ms 5868 KB Output is correct
13 Correct 4 ms 5888 KB Output is correct
14 Correct 4 ms 5868 KB Output is correct
15 Correct 4 ms 5888 KB Output is correct
16 Correct 4 ms 5868 KB Output is correct
17 Correct 6 ms 5996 KB Output is correct
18 Correct 7 ms 6176 KB Output is correct
19 Correct 5 ms 5996 KB Output is correct
20 Correct 4 ms 5868 KB Output is correct
21 Correct 6 ms 5868 KB Output is correct
22 Correct 5 ms 5868 KB Output is correct
23 Correct 7 ms 5996 KB Output is correct
24 Correct 6 ms 5996 KB Output is correct
25 Correct 6 ms 5868 KB Output is correct
26 Correct 5 ms 5868 KB Output is correct
27 Correct 5 ms 5868 KB Output is correct
28 Correct 5 ms 5996 KB Output is correct
29 Correct 6 ms 5996 KB Output is correct
30 Correct 6 ms 5868 KB Output is correct
31 Correct 5 ms 5996 KB Output is correct
32 Correct 5 ms 5868 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 4 ms 5888 KB Output is correct
2 Correct 4 ms 5868 KB Output is correct
3 Correct 4 ms 5868 KB Output is correct
4 Correct 4 ms 5868 KB Output is correct
5 Correct 4 ms 6016 KB Output is correct
6 Correct 4 ms 5868 KB Output is correct
7 Correct 4 ms 5868 KB Output is correct
8 Correct 4 ms 5868 KB Output is correct
9 Correct 4 ms 5868 KB Output is correct
10 Correct 4 ms 5868 KB Output is correct
11 Correct 4 ms 5868 KB Output is correct
12 Correct 4 ms 5868 KB Output is correct
13 Correct 4 ms 5888 KB Output is correct
14 Correct 4 ms 5868 KB Output is correct
15 Correct 4 ms 5888 KB Output is correct
16 Correct 4 ms 5868 KB Output is correct
17 Correct 6 ms 5996 KB Output is correct
18 Correct 7 ms 6176 KB Output is correct
19 Correct 5 ms 5996 KB Output is correct
20 Correct 4 ms 5868 KB Output is correct
21 Correct 6 ms 5868 KB Output is correct
22 Correct 5 ms 5868 KB Output is correct
23 Correct 7 ms 5996 KB Output is correct
24 Correct 6 ms 5996 KB Output is correct
25 Correct 6 ms 5868 KB Output is correct
26 Correct 5 ms 5868 KB Output is correct
27 Correct 5 ms 5868 KB Output is correct
28 Correct 5 ms 5996 KB Output is correct
29 Correct 6 ms 5996 KB Output is correct
30 Correct 6 ms 5868 KB Output is correct
31 Correct 5 ms 5996 KB Output is correct
32 Correct 5 ms 5868 KB Output is correct
33 Correct 361 ms 15576 KB Output is correct
34 Correct 136 ms 16364 KB Output is correct
35 Correct 285 ms 12900 KB Output is correct
36 Correct 517 ms 22196 KB Output is correct
37 Correct 26 ms 10732 KB Output is correct
38 Correct 627 ms 23900 KB Output is correct
39 Correct 588 ms 23992 KB Output is correct
40 Correct 597 ms 23912 KB Output is correct
41 Correct 624 ms 23900 KB Output is correct
42 Correct 558 ms 23900 KB Output is correct
43 Correct 577 ms 23960 KB Output is correct
44 Correct 556 ms 23876 KB Output is correct
45 Correct 560 ms 23944 KB Output is correct
46 Correct 547 ms 23980 KB Output is correct
47 Correct 582 ms 23900 KB Output is correct
48 Correct 145 ms 18404 KB Output is correct
49 Correct 160 ms 21524 KB Output is correct
50 Correct 51 ms 9324 KB Output is correct
51 Correct 59 ms 11984 KB Output is correct
52 Correct 30 ms 9068 KB Output is correct
53 Correct 260 ms 22112 KB Output is correct
54 Correct 171 ms 13268 KB Output is correct
55 Correct 483 ms 18784 KB Output is correct
56 Correct 283 ms 14228 KB Output is correct
57 Correct 401 ms 21160 KB Output is correct
58 Correct 38 ms 12392 KB Output is correct
59 Correct 60 ms 11500 KB Output is correct
60 Correct 137 ms 19820 KB Output is correct
61 Correct 151 ms 20436 KB Output is correct
62 Correct 101 ms 17476 KB Output is correct
63 Correct 81 ms 15596 KB Output is correct
64 Correct 100 ms 17260 KB Output is correct
65 Correct 108 ms 23916 KB Output is correct
66 Correct 180 ms 10604 KB Output is correct
67 Correct 129 ms 18668 KB Output is correct
68 Correct 327 ms 24556 KB Output is correct
69 Correct 88 ms 7660 KB Output is correct
70 Correct 23 ms 6124 KB Output is correct
71 Correct 147 ms 14188 KB Output is correct
72 Correct 202 ms 21100 KB Output is correct
73 Correct 511 ms 27244 KB Output is correct
74 Correct 544 ms 24428 KB Output is correct
75 Correct 380 ms 27392 KB Output is correct
76 Correct 363 ms 26092 KB Output is correct
77 Correct 504 ms 24684 KB Output is correct