#pragma GCC target ("avx")
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
#define _USE_MATH_DEFINES
#include<iostream>
#include<string>
#include<queue>
#include<cmath>
#include<map>
#include<set>
#include<list>
#include<iomanip>
#include<vector>
#include<random>
#include<functional>
#include<algorithm>
#include<stack>
#include<cstdio>
#include<cstring>
#include<bitset>
#include<unordered_map>
#include<climits>
#include<fstream>
#include<complex>
#include<time.h>
#include<cassert>
#include<functional>
#include<numeric>
#include<tuple>
using namespace std;
using ll = long long;
using ld = long double;
using H = pair<ll, ll>;
using P = pair<ll, H>;
using vi = vector<ll>;
#define all(a) (a).begin(),(a).end()
#define fs first
#define sc second
#define xx first
#define yy second.first
#define zz second.second
#define Q(i,j,k) mkp(i,mkp(j,k))
#define rng(i,s,n) for(ll i = (s) ; i < (n) ; i++)
#define rep(i,n) rng(i, 0, (n))
#define mkp make_pair
#define vec vector
#define pb emplace_back
#define siz(a) int(a.size())
#define crdcomp(b) sort(all((b)));(b).erase(unique(all((b))),(b).end())
#define getidx(b,i) (lower_bound(all(b),(i))-(b).begin())
#define ssp(i,n) (i==(ll)(n)-1?"\n":" ")
#define ctoi(c) (int)(c-'0')
#define itoc(c) (char)(c+'0')
#define cyes printf("Yes\n")
#define cno printf("No\n")
#define cdf(n) for(int quetimes_=(n);quetimes_>0;quetimes_--)
#define gcj printf("Case #%lld: ",qq123_+1)
#define readv(a,n) a.resize(n,0);rep(i,(n)) a[i]=read()
#define found(a,x) (a.find(x)!=a.end())
constexpr ll mod = (ll)1e9 + 7;
constexpr ll Mod = 998244353;
constexpr ld EPS = 1e-10;
constexpr ll inf = (ll)3 * 1e18;
constexpr int Inf = (ll)15 * 1e8;
constexpr int dx[] = { -1,1,0,0 }, dy[] = { 0,0,-1,1 };
template<class T>bool chmax(T& a, const T& b) { if (a < b) { a = b; return 1; } return 0; }
template<class T>bool chmin(T& a, const T& b) { if (b < a) { a = b; return 1; } return 0; }
ll read() { ll u, k = scanf("%lld", &u); return u; }
string reads() { string s; cin >> s; return s; }
H readh(short g = 0) { H u; int k = scanf("%lld %lld", &u.fs, &u.sc); if (g == 1) u.fs--, u.sc--; if (g == 2) u.fs--; return u; }
bool ina(H t, int h, int w) { return 0 <= t.fs && t.fs < h && 0 <= t.sc && t.sc < w; }
bool ina(int t, int l, int r) { return l <= t && t < r; }
ll gcd(ll i, ll j) { return j ? gcd(j, i % j) : i; }
ll ppc(ll x) {
int sum = 0; for (int i = 0; i < 60; i++)if ((1ll << i) & x) sum++;
return sum;
}
template<typename T>
void fin(T x) { cout << x << endl; exit(0); }
template<typename T>
class csum {
vec<T> v;
public:
csum(vec<T>& a) :v(a) { build(); }
csum() {}
csum(int sz) { init(sz); }
void init(int sz) { v = vector<T>(sz + 1, 0); }
void init(vec<T>& a) { v = a; build(); }
void build() {
for (int i = 1; i < v.size(); i++) v[i] += v[i - 1];
}
void add(int l, int r, T x) {
v[l] += x;
v[r] -= x;
}//[l,r)
void add(int t, T x) {
v[t] += x;
}//[l,r)
//[l,r]
T a(int l, int r) {
if (r < l) return 0;
return v[r] - (l == 0 ? 0 : v[l - 1]);
}
//[l,r)
T b(int l, int r) {
return a(l, r - 1);
}
T a(pair<int, int>t) {
return a(t.first, t.second);
}
T b(pair<int, int>t) {
return b(t.first, t.second);
}
T operator[](int x)const {
return v[x];
}
};
template<ll mod>
class modint {
public:ll v;
modint(ll v = 0) { s(v % mod + mod); }
constexpr static int fn_ = (ll)2e6 + 5;
static vector<modint>fact, comp;
modint pow(ll x) const {
modint b(v), c(1);
while (x) {
if (x & 1) c *= b;
b *= b;
x >>= 1;
}
return c;
}
inline modint& s(int vv) {
v = vv < mod ? vv : vv - mod;
return *this;
}
inline modint inv()const { return pow(mod - 2); }
inline modint operator-()const { return modint() - *this; }
inline modint& operator+=(const modint b) { return s(v + b.v); }
inline modint& operator-=(const modint b) { return s(v + mod - b.v); }
inline modint& operator*=(const modint b) { v = v * b.v % mod; return *this; }
inline modint& operator/=(const modint b) { v = v * b.inv().v % mod; return *this; }
inline modint operator+(const modint& b) const { return modint(v) += b; }
inline modint operator-(const modint& b) const { return modint(v) -= b; }
inline modint operator*(const modint& b) const { return modint(v) *= b; }
inline modint operator/(const modint& b) const { return modint(v) /= b; }
friend ostream& operator<<(ostream& os, const modint& m) {
return os << m.v;
}
friend istream& operator>>(istream& is, modint& m) {
int x; is >> x; m = modint(x);
return is;
}
bool operator<(const modint& r)const { return v < r.v; }
bool operator>(const modint& r)const { return v > r.v; }
bool operator<=(const modint& r)const { return v <= r.v; }
bool operator>=(const modint& r)const { return v >= r.v; }
bool operator==(const modint& r)const { return v == r.v; }
bool operator!=(const modint& r)const { return v != r.v; }
explicit operator bool()const { return v; }
explicit operator int()const { return v; }
modint comb(modint k) {
if (k > *this) return modint();
if (fact.empty()) combinit();
if (v >= fn_) {
if (k > *this - k) k = *this - k;
modint tmp(1);
for (int i = v; i >= v - k.v + 1; i--) tmp *= modint(i);
return tmp * comp[k.v];
}
return fact[v] * comp[k.v] * comp[v - k.v];
}//nCk
modint perm(modint k) {
if (k > *this) return modint();
if (fact.empty()) combinit();
if (v >= fn_) {
modint tmp(1);
for (int i = v; i >= v - k.v + 1; i--) tmp *= modint(i);
return tmp;
}
return fact[v] * comp[v - k.v];
}//nPk
static void combinit() {
fact.assign(fn_, modint());
fact[0] = 1;
for (int i = 1; i < fn_; i++) fact[i] = fact[i - 1] * modint(i);
comp.assign(fn_, modint());
comp[fn_ - 1] = fact[fn_ - 1].inv();
for (int i = fn_ - 2; i >= 0; i--) comp[i] = comp[i + 1] * modint(i + 1);
}
};
using mint = modint<ll(1e9 + 7)>; template<>vec<mint> mint::fact = vec<mint>(); template<>vec<mint> mint::comp = vec<mint>();
//--------------------------------------------------------------
//--------------------------------------------------------------
template<class T>
class LazySegmentTree {
protected:
using UPF = function<void(T&, const int&)>;
using QRF = function<void(T&, const T)>;
using F = function<bool(T a)>;
using ll = long long;
int n, rr;
vector<T>dat;
vector<int>len;
LazySegmentTree() {}
LazySegmentTree(int size) { init(size); }
LazySegmentTree(vector<T>& v) {
init(v);
}
virtual ~LazySegmentTree() {}
virtual void eval(const T& par, T& a, const int& al) = 0;
virtual void fold(T& par, const int& pl) = 0;
virtual T proc(const T& a, const int& al, const T& b, const int& bl) = 0;
public:
void init(int size) {
n = size, rr = 1;
while (rr < n) rr <<= 1;
dat.assign(2 * rr - 1, T());
len.assign(2 * rr - 1, 0);
for (int i = 0; i < n; i++) {
len[i + rr - 1] = 1;
dat[i + rr - 1] = T();
}
for (int i = rr - 2; i >= 0; i--) {
len[i] = len[i * 2 + 1] + len[i * 2 + 2];
dat[i] = proc(dat[i * 2 + 1], len[i * 2 + 1], dat[i * 2 + 2], len[i * 2 + 2]);
}
}
void init(vector<T>& v) {
n = (int)v.size(), rr = 1;
while (rr < n) rr <<= 1;
dat.assign(2 * rr - 1, T());
len.assign(2 * rr - 1, 0);
for (int i = 0; i < n; i++) {
dat[i + rr - 1] = v[i];
len[i + rr - 1] = 1;
}
for (int i = rr - 2; i >= 0; i--) {
len[i] = len[i * 2 + 1] + len[i * 2 + 2];
dat[i] = proc(dat[i * 2 + 1], len[i * 2 + 1], dat[i * 2 + 2], len[i * 2 + 2]);
}
}
//one point update
void set(int at, T x) {
upd(at, at + 1, [&x](T& a, const int& len){a = x; });
}
void upd(int a, int b, UPF func) {
upd(0, a, b, 0, rr, func);
}
T qry(int a, int b) {
return qry(0, a, b, 0, rr);
}
T get0() {
return dat[0];
}
//func([a,i))==true, func([a,i+1))==false
int lb(int a, int b, F func) {
T e = T();
int lgt = 0;
return lb(0, a, b, 0, rr, func, e, lgt);
}
//func([i,b))==true, func([i-1,b))==false
int ub(int a, int b, F func) {
T e = T();
int lgt = 0;
return ub(0, a, b, 0, rr, func, e, lgt);
}
private:
void upd(int i, const int& a, const int& b, int l, int r, UPF& func) {
if (b <= l || r <= a) return;
if (a <= l && r <= b) {
func(dat[i], len[i]);
return;
}
eval(dat[i], dat[i * 2 + 1], len[i * 2 + 1]);
eval(dat[i], dat[i * 2 + 2], len[i * 2 + 2]);
fold(dat[i], len[i]);
upd(i * 2 + 1, a, b, l, (l + r) / 2, func);
upd(i * 2 + 2, a, b, (l + r) / 2, r, func);
dat[i] = proc(dat[i * 2 + 1], len[i * 2 + 1], dat[i * 2 + 2], len[i * 2 + 2]);
}
T qry(int i, const int& a, const int& b, int l, int r) {
if (b <= l || r <= a) return T();
if (a <= l && r <= b) return dat[i];
eval(dat[i], dat[i * 2 + 1], len[i * 2 + 1]);
eval(dat[i], dat[i * 2 + 2], len[i * 2 + 2]);
fold(dat[i], len[i]);
return proc(qry(i * 2 + 1, a, b, l, (l + r) / 2), len[i * 2 + 1],
qry(i * 2 + 2, a, b, (l + r) / 2, r), len[i * 2 + 2]);
}
int lb(int i, int a, int b, int l, int r, F& func, T& wa, int& lgt) {
if (b <= l || r <= a) return b;
if (a <= l && r <= b) {
if (func(proc(wa, lgt, dat[i], len[i]))) {
wa = proc(wa, lgt, dat[i], len[i]);
lgt += len[i];
return b;
}
if (r - l == 1) return l;
}
eval(dat[i], dat[i * 2 + 1], len[i * 2 + 1]);
eval(dat[i], dat[i * 2 + 2], len[i * 2 + 2]);
fold(dat[i], len[i]);
int tmp = lb(i * 2 + 1, a, b, l, (l + r) / 2, func, wa, lgt);
if (tmp < b) return tmp;
return lb(i * 2 + 2, a, b, (l + r) / 2, r, func, wa, lgt);
}
int ub(int i, int a, int b, int l, int r, F& func, T& wa, int& lgt) {
if (b <= l || r <= a) return a;
if (a <= l && r <= b) {
if (func(proc(dat[i], len[i], wa, lgt))) {
wa = proc(dat[i], len[i], wa, lgt);
lgt += len[i];
return a;
}
if (r - l == 1) return r;
}
eval(dat[i], dat[i * 2 + 1], len[i * 2 + 1]);
eval(dat[i], dat[i * 2 + 2], len[i * 2 + 2]);
fold(dat[i], len[i]);
int tmp = ub(i * 2 + 2, a, b, (l + r) / 2, r, func, wa, lgt);
if (tmp > a) return tmp;
return ub(i * 2 + 1, a, b, l, (l + r) / 2, func, wa, lgt);
}
};
ll k;
template<class T>
class Segtree :public LazySegmentTree<T> {
using Base = LazySegmentTree<T>;
public:
Segtree() {}
Segtree(int size) {
init(size);
}
Segtree(vector<ll> v) {
init(v);
}
void init(int size) {
Base::init(size);
}
void init(vector<ll> v) {
vector<T>r(v.size());
for (int i = 0; i < v.size(); i++) {
r[i] = T(v[i], 0);
}
Base::init(r);
}
void update(int a, ll x) {
Base::set(a, T(x, 0));
}
void div(int a, int b) {
Base::upd(a, b, [](T& dat, const int& len) {
if (!dat.u.empty()) {
dat.v = dat.u[0];
dat.u.pop_front();
}
else dat.v = 0;
dat.l++;
});
}
ll query(int a, int b) {
return Base::qry(a, b).v;
}
T get0() {
return Base::get0();
}
private:
void eval(const T& par, T& a, const int& al)override {
if (par.l >= siz(a.u)) {
a.u.clear();
a.v = 0;
}
else {
rep(i, par.l) {
a.v = a.u[0];
a.u.pop_front();
}
}
a.l += par.l;
}
void fold(T& par, const int& pl) override {
par.l = 0;
}
T proc(const T& a, const int& al, const T& b, const int& bl)override {
T ret = T(a.v + b.v, 0);
rep(i, 33) ret.u[i] = (siz(a.u) <= i ? 0ll : a.u[i]) +
(siz(b.u) <= i ? 0ll : b.u[i]);
return ret;
}
};
struct Mn {
ll v, l;//現在の総和、処分していない間に何回割ったか
deque<ll> u;//1回割ったときの総和、2回割ったときの総和、3回…
Mn() :v(0), l(0), u(deque<ll>(33, 0)) {}
Mn(ll v, ll l) :v(v), l(l), u(deque<ll>(33, 0)) {
ll g = v;
rep(i, 33) {
g /= k;
u[i] = g;
}
}
};
signed main() {
int n, q; cin >> n >> q >> k;
vi a; readv(a, n);
Segtree<Mn>seg(a);
rep(i, q) {
int t; ll l, r; cin >> t >> l >> r;
l--;
if (t == 1) seg.update(l, r);
else if (t == 2) seg.div(l, r);
else cout << seg.query(l, r) << endl;
}
}
Compilation message
sterilizing.cpp: In function 'll read()':
sterilizing.cpp:69:19: warning: unused variable 'k' [-Wunused-variable]
69 | ll read() { ll u, k = scanf("%lld", &u); return u; }
| ^
sterilizing.cpp: In function 'H readh(short int)':
sterilizing.cpp:71:33: warning: unused variable 'k' [-Wunused-variable]
71 | H readh(short g = 0) { H u; int k = scanf("%lld %lld", &u.fs, &u.sc); if (g == 1) u.fs--, u.sc--; if (g == 2) u.fs--; return u; }
| ^
sterilizing.cpp: In instantiation of 'void Segtree<T>::init(std::vector<long long int>) [with T = Mn]':
sterilizing.cpp:347:9: required from 'Segtree<T>::Segtree(std::vector<long long int>) [with T = Mn]'
sterilizing.cpp:418:21: required from here
sterilizing.cpp:354:27: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<long long int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
354 | for (int i = 0; i < v.size(); i++) {
| ~~^~~~~~~~~~
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
19 ms |
620 KB |
Output is correct |
2 |
Incorrect |
16 ms |
2412 KB |
Output isn't correct |
3 |
Halted |
0 ms |
0 KB |
- |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Incorrect |
2203 ms |
126592 KB |
Output isn't correct |
2 |
Halted |
0 ms |
0 KB |
- |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
578 ms |
16368 KB |
Output is correct |
2 |
Correct |
421 ms |
123244 KB |
Output is correct |
3 |
Correct |
591 ms |
123372 KB |
Output is correct |
4 |
Correct |
1652 ms |
63340 KB |
Output is correct |
5 |
Correct |
2201 ms |
253676 KB |
Output is correct |
6 |
Correct |
2201 ms |
253548 KB |
Output is correct |
7 |
Incorrect |
2209 ms |
253608 KB |
Output isn't correct |
8 |
Halted |
0 ms |
0 KB |
- |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
1376 ms |
128236 KB |
Output is correct |
2 |
Correct |
1590 ms |
129132 KB |
Output is correct |
3 |
Correct |
1045 ms |
123756 KB |
Output is correct |
4 |
Correct |
1715 ms |
69100 KB |
Output is correct |
5 |
Correct |
2224 ms |
254524 KB |
Output is correct |
6 |
Correct |
2250 ms |
254592 KB |
Output is correct |
7 |
Correct |
2243 ms |
254572 KB |
Output is correct |
8 |
Correct |
2275 ms |
254444 KB |
Output is correct |
9 |
Correct |
2061 ms |
254444 KB |
Output is correct |
10 |
Correct |
2091 ms |
254444 KB |
Output is correct |
11 |
Correct |
2044 ms |
254268 KB |
Output is correct |
12 |
Correct |
2113 ms |
254316 KB |
Output is correct |