Submission #355086

# Submission time Handle Problem Language Result Execution time Memory
355086 2021-01-22T08:58:48 Z ryansee Comparing Plants (IOI20_plants) C++14
14 / 100
4000 ms 260828 KB
#include "plants.h"
 
#include "bits/stdc++.h"
using namespace std;
 
#define FAST ios_base::sync_with_stdio(false); cin.tie(0);
#define pb push_back
#define eb emplace_back
#define ins insert
#define f first
#define s second
#define cbr cerr<<"hi\n"
#define mmst(x, v) memset((x), v, sizeof ((x)))
#define siz(x) ll(x.size())
#define all(x) (x).begin(), (x).end()
#define lbd(x,y) (lower_bound(all(x),y)-x.begin())
#define ubd(x,y) (upper_bound(all(x),y)-x.begin())
mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());    //can be used by calling rng() or shuffle(A, A+n, rng)
inline long long rand(long long x, long long y) { return rng() % (y+1-x) + x; } //inclusivesss
string inline to_string(char c) {string s(1,c);return s;} template<typename T> inline T gcd(T a,T b){ return a==0?llabs(b):gcd(b%a,a); }
 
using ll=long long; 
using ld=long double;
#define FOR(i,s,e) for(ll i=s;i<=ll(e);++i)
#define DEC(i,s,e) for(ll i=s;i>=ll(e);--i)
using pi=pair<ll,ll>; using spi=pair<ll,pi>; using dpi=pair<pi,pi>; 
 
long long LLINF = 1e18;
int INF = 1e9+1e6;
#define MAXN (200002)
 
int n, start, k;
vector<int> R;
ll A[MAXN*2];
inline ll cy(ll x) {
	x %= n, x += n, x %= n; return x;
}
ll dist(int x,int y) {
	if(x > y) swap(x, y);
	return min(y-x, n-y+x);	
}

struct node {
	int s,e,m;
	spi v;
	ll lazy[3];
	node*l,*r;
	node(int S,int E){
		s=S,e=E,m=(s+e)>>1;
		v=spi(LLINF, pi(0, -1)), mmst(lazy, 0);
		if(s^e)l=new node(s,m),r=new node(m+1,e),v=min(l->v,r->v);
		else v=spi(R[s], pi(0, s));
	}
	void value() {
		v.f += lazy[0], v.s.f += lazy[1];
		if(s^e) FOR(i,0,1) l->lazy[i]+=lazy[i], r->lazy[i]+=lazy[i];
		lazy[0]=lazy[1]=0;
	}
	void update(int x,int y,pi nval) {
		if(s==x&&e==y) {
			if(nval.s <= 1) lazy[nval.s] += nval.f;
			else lazy[nval.s] = max(lazy[nval.s], nval.f);
			return;
		}
		if(x>m) r->update(x,y,nval);
		else if(y<=m) l->update(x,y,nval);
		else l->update(x,m,nval),r->update(m+1,y,nval);
		l->value(), r->value();
		v=min(l->v,r->v);
	}
	spi rmq(int x,int y) {
		value();
		if(s==x&&e==y) return v;
		if(x>m) return r->rmq(x,y);
		else if(y<=m) return l->rmq(x,y);
		else return min(l->rmq(x,m),r->rmq(m+1,y));
	}
	void set(int x,ll add=0) {
		value();
		add = max(add, lazy[2]);
		if(s==e) {
			A[s] = add;
			v = spi(LLINF, pi(0, -1));
			return;
		}
		if(x>m) r->set(x, add);
		else l->set(x, add);
		l->value(), r->value();
		v = min(l->v, r->v);
	}
} *seg;
void update(int x,int y,pi nval) {
	x=cy(x), y=cy(y);
	if(x<=y) seg->update(x,y,nval);
	else seg->update(x,n-1,nval), seg->update(0,y,nval);
}
spi rmq(int x,int y) {
	x=cy(x), y=cy(y);
	if(x<=y) return seg->rmq(x, y);
	else return min(seg->rmq(x, n-1), seg->rmq(0, y));
}
struct node2 {
	int s,e,m;
	array<pi, 2> v;
	node2*l,*r;
	node2(int S,int E){
		s=S,e=E,m=(s+e)>>1;
		v = {pi(INF, -1), pi(-INF, -1)};
		if(s^e)l=new node2(s,m),r=new node2(m+1,e);
	}
	array<pi, 2> comb(array<pi, 2> x,array<pi, 2> y) {
		return array<pi, 2> {min(x[0], y[0]), max(x[1], y[1])};
	}
	array<pi, 2> rmq(int x,int y) {
		if(s==x&&e==y) return v;
		if(x>m) return r->rmq(x, y);
		else if(y<=m) return l->rmq(x, y);
		else return comb(l->rmq(x, m), r->rmq(m+1, y));
	}
	ll mx(int x,int y) {
		if(x <= y) return rmq(x, y)[1].s;
		else assert(0);
	}
	ll mi(int x,int y) {
		if(x <= y) return rmq(x, y)[0].s;
		else assert(0);
	}
	void set(int x) {
		if(s==e) {
			v = {pi(A[s], s), pi(A[s], s)};
			return;
		}
		if(x>m) r->set(x);
		else l->set(x);
		v = comb(l->v, r->v);
	}
} *seg2;
struct tree {
	int p[MAXN*2][19];
	bitset<MAXN*2> r;
	vector<int> v[MAXN*2];
	tree() {
		mmst(p, 0), r.set();
	}
	void add(int x,int y) {
		if(y==-1||x==y) return;
		r[x]=0, v[y].eb(x);
	}
	void solve() {
		function<void(ll)>dfs=[&](int x) {
			for(auto i:v[x]) p[i][0]=x, dfs(i);
		};
		FOR(i,0,2*n-1) if(r[i]) p[i][0]=2*n, dfs(i);
		FOR(j,1,18) FOR(i,0,2*n-1) p[i][j]=p[p[i][j-1]][j-1];
	}
	ll h(int x,int l) {
		DEC(i,18,0) if(p[x][i] < l) x = p[x][i];
		return p[x][0]; 
	}
} t[2];
void init(int K, std::vector<int> r) { k=K, R=r;
	n=r.size();
	seg=new node(0, n-1);
	FOR(i,0,n-1) if(r[i]==0) update(i+1, i+k-1, pi(1, 1));
	while(1) {
		start = seg->rmq(0, n-1).s.s;
		if(start == -1) break;
		seg->set(start);
		update(start+1, start+k-1, pi(A[start]+1, 2));
		update(start+1, start+k-1, pi(-1, 1));
		update(start-k+1, start-1, pi(A[start]+1, 2));
		update(start-k+1, start-1, pi(-1, 0));
		vector<int> tmp;
		while(1) {
			spi x = rmq(start-k+1, start-1);
			if(x.f == 0) {
				tmp.eb(x.s.s);
				update(x.s.s+1, x.s.s+k-1, pi(1, 1));
				update(x.s.s, x.s.s, pi(1, 0));
			} else break;
		}
		for(auto i:tmp) update(i, i, pi(-1, 0));
	}
	/* dp[0][0]=dp[1][0]=1;
	FOR(i,0,1) fw[i].update(A[0], 1);
	FOR(i,1,n-1) {
		// FOR(jj,i-k+1,i-1) { int j=cy(jj);
			// assert(A[i] ^ A[j]);
			// if(A[i] < A[j]) dp[0][i] |= dp[0][j];
			// else dp[1][i] |= dp[1][j];
		// }
		if(i >= k) FOR(j,0,1) if(dp[j][i-k]) fw[j].update(A[i-k], -1);
		dp[0][i] = fw[0].sum(A[i]+1, MAXN-2) > 0;
		dp[1][i] = fw[1].sum(0, A[i]-1) > 0;
		FOR(j,0,1) if(dp[j][i]) fw[j].update(A[i], 1);
	}
	fw[0]=fen(), fw[1]=fen();
	dp2[0][0]=dp2[1][0]=1;
	FOR(i,0,1) fw[i].update(A[0], 1);
	DEC(ii,-1,-n+1) { int i=cy(ii);
		// FOR(jj,i+1,i+k-1) { int j=cy(jj);
			// assert(A[i] ^ A[j]);
			// if(A[i] < A[j]) dp2[0][i] |= dp2[0][j];
			// else dp2[1][i] |= dp2[1][j];
		// }
		int t = cy(i + k);
		if(t > i || t == 0) {
			FOR(j,0,1) if(dp2[j][t]) fw[j].update(A[t], -1);
		}
		dp2[0][i] = fw[0].sum(A[i]+1, MAXN-2) > 0;
		dp2[1][i] = fw[1].sum(0, A[i]-1) > 0;
		FOR(j,0,1) if(dp2[j][i]) fw[j].update(A[i], 1);
	} */
	
	vector<int> p;
	FOR(i,0,n-1) p.eb(i), p.eb(i+n), A[i+n]=A[i];
	sort(all(p), [](int x,int y){return A[x]<A[y];});
	seg2=new node2(0, 2*n-1);
	for(auto i:p) {
		int target = seg2->mx(i, min(2*n-1, i+k-1)); // connect to shortest tower within k that is taller than you
		t[0].add(i, target);
		seg2->set(i);
	}
	
	sort(all(p), [](int x,int y){return A[x]>A[y];});
	seg2=new node2(0, 2*n-1);
	for(auto i:p) {
		int target = seg2->mi(i, min(2*n-1, i+k-1));
		t[1].add(i, target);
		seg2->set(i);
	}
	// FOR(i,0,n-1) {
		// int target = seg2->mi(i, i-k+1);
		// t[2].add(i, target);
	// }
	// FOR(i,0,n-1) {
		// int target = seg2->mx(i, i-k+1);
		// t[3].add(i, target);
	// }
	FOR(i,0,1) t[i].solve();
}
int compare_plants(int x, int y) {
	/* if(x == 0) {
		if(dp[0][y] || dp2[0][y]) return -1;
		else if(dp[1][y] || dp2[1][y]) return 1;
		else return 0;
	}
	if(n > 300 || reach[x][y] || reach[y][x]) return A[x] < A[y] ? 1 : -1;
	else return 0; */
	
	if(dist(x, y) < k) {
		return A[x] < A[y] ? 1 : -1;
	}
	
	// FOR(i,y,y+k-1) {
		// if(A[y] <= A[i]) {
			// if(t[0].isp(i, x)) { assert(A[i] < A[x]); return -1; }
		// }
	// }
	int i = t[0].h(x, y);
	if(i <= y+k-1 && A[y] <= A[i]) {
		assert(A[i] < A[x]);
		return -1;
	}
	// FOR(i,y,y+k-1) {
		// if(A[y] >= A[i]) {
			// if(t[1].isp(i, x)) { assert(A[x] < A[i]); return 1; }
		// }
	// }
	i = t[1].h(x, y);
	if(i <= y+k-1 && A[y] >= A[i]) {
		assert(A[x] < A[i]);
		return 1;
	}
	swap(x, y);
	y += n;
	// FOR(i,y,min(2*n-1, y+k-1)) {
		// if(A[y] <= A[i]) {
			// if(t[0].isp(i, x)) { assert(A[i] < A[x]); return 1; }
		// }
	// }
	i = t[0].h(x, y);
	if(i <= min(2*n-1, y+k-1) && A[y] <= A[i]) {
		assert(A[i] < A[x]);
		return 1;
	}
	// FOR(i,y,min(2*n-1, y+k-1)) {
		// if(A[y] >= A[i]) {
			// if(t[1].isp(i, x)) { assert(A[x] < A[i]); return -1; }
		// }
	// }
	i = t[1].h(x, y);
	if(i <= min(2*n-1, y+k-1) && A[y] >= A[i]) {
		assert(A[x] < A[i]);
		return -1;
	}
	return 0;
}
# Verdict Execution time Memory Grader output
1 Correct 45 ms 78700 KB Output is correct
2 Correct 47 ms 78700 KB Output is correct
3 Correct 45 ms 78700 KB Output is correct
4 Correct 45 ms 78700 KB Output is correct
5 Incorrect 44 ms 78700 KB Output isn't correct
6 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 47 ms 78700 KB Output is correct
2 Correct 53 ms 78704 KB Output is correct
3 Correct 50 ms 78700 KB Output is correct
4 Correct 45 ms 78700 KB Output is correct
5 Correct 46 ms 78828 KB Output is correct
6 Correct 56 ms 79724 KB Output is correct
7 Correct 160 ms 86252 KB Output is correct
8 Correct 47 ms 78828 KB Output is correct
9 Correct 55 ms 79852 KB Output is correct
10 Correct 162 ms 86252 KB Output is correct
11 Correct 140 ms 86380 KB Output is correct
12 Correct 142 ms 86636 KB Output is correct
13 Correct 155 ms 86252 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 47 ms 78700 KB Output is correct
2 Correct 53 ms 78704 KB Output is correct
3 Correct 50 ms 78700 KB Output is correct
4 Correct 45 ms 78700 KB Output is correct
5 Correct 46 ms 78828 KB Output is correct
6 Correct 56 ms 79724 KB Output is correct
7 Correct 160 ms 86252 KB Output is correct
8 Correct 47 ms 78828 KB Output is correct
9 Correct 55 ms 79852 KB Output is correct
10 Correct 162 ms 86252 KB Output is correct
11 Correct 140 ms 86380 KB Output is correct
12 Correct 142 ms 86636 KB Output is correct
13 Correct 155 ms 86252 KB Output is correct
14 Correct 395 ms 100048 KB Output is correct
15 Execution timed out 4070 ms 260828 KB Time limit exceeded
16 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 46 ms 78700 KB Output is correct
2 Correct 45 ms 78700 KB Output is correct
3 Runtime error 203 ms 167916 KB Execution killed with signal 6
4 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 47 ms 78700 KB Output is correct
2 Correct 45 ms 78828 KB Output is correct
3 Incorrect 50 ms 78700 KB Output isn't correct
4 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 45 ms 78700 KB Output is correct
2 Correct 44 ms 78700 KB Output is correct
3 Incorrect 45 ms 78700 KB Output isn't correct
4 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 45 ms 78700 KB Output is correct
2 Correct 47 ms 78700 KB Output is correct
3 Correct 45 ms 78700 KB Output is correct
4 Correct 45 ms 78700 KB Output is correct
5 Incorrect 44 ms 78700 KB Output isn't correct
6 Halted 0 ms 0 KB -