Submission #355067

# Submission time Handle Problem Language Result Execution time Memory
355067 2021-01-22T08:45:44 Z ryansee Comparing Plants (IOI20_plants) C++14
14 / 100
4000 ms 215508 KB
#include "plants.h"
 
#include "bits/stdc++.h"
using namespace std;
 
#define FAST ios_base::sync_with_stdio(false); cin.tie(0);
#define pb push_back
#define eb emplace_back
#define ins insert
#define f first
#define s second
#define cbr cerr<<"hi\n"
#define mmst(x, v) memset((x), v, sizeof ((x)))
#define siz(x) ll(x.size())
#define all(x) (x).begin(), (x).end()
#define lbd(x,y) (lower_bound(all(x),y)-x.begin())
#define ubd(x,y) (upper_bound(all(x),y)-x.begin())
mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());    //can be used by calling rng() or shuffle(A, A+n, rng)
inline long long rand(long long x, long long y) { return rng() % (y+1-x) + x; } //inclusivesss
string inline to_string(char c) {string s(1,c);return s;} template<typename T> inline T gcd(T a,T b){ return a==0?llabs(b):gcd(b%a,a); }
 
using ll=long long; 
using ld=long double;
#define FOR(i,s,e) for(ll i=s;i<=ll(e);++i)
#define DEC(i,s,e) for(ll i=s;i>=ll(e);--i)
using pi=pair<ll,ll>; using spi=pair<ll,pi>; using dpi=pair<pi,pi>; 
 
long long LLINF = 1e18;
int INF = 1e9+1e6;
#define MAXN (200002)
 
int n, start, k;
vector<int> R;
ll A[MAXN];
inline ll cy(ll x) {
	x %= n, x += n, x %= n; return x;
}
ll dist(int x,int y) {
	if(x > y) swap(x, y);
	return min(y-x, n-y+x);	
}

struct node {
	int s,e,m;
	spi v;
	ll lazy[3];
	node*l,*r;
	node(int S,int E){
		s=S,e=E,m=(s+e)>>1;
		v=spi(LLINF, pi(0, -1)), mmst(lazy, 0);
		if(s^e)l=new node(s,m),r=new node(m+1,e),v=min(l->v,r->v);
		else v=spi(R[s], pi(0, s));
	}
	void value() {
		v.f += lazy[0], v.s.f += lazy[1];
		if(s^e) FOR(i,0,1) l->lazy[i]+=lazy[i], r->lazy[i]+=lazy[i];
		lazy[0]=lazy[1]=0;
	}
	void update(int x,int y,pi nval) {
		if(s==x&&e==y) {
			if(nval.s <= 1) lazy[nval.s] += nval.f;
			else lazy[nval.s] = max(lazy[nval.s], nval.f);
			return;
		}
		if(x>m) r->update(x,y,nval);
		else if(y<=m) l->update(x,y,nval);
		else l->update(x,m,nval),r->update(m+1,y,nval);
		l->value(), r->value();
		v=min(l->v,r->v);
	}
	spi rmq(int x,int y) {
		value();
		if(s==x&&e==y) return v;
		if(x>m) return r->rmq(x,y);
		else if(y<=m) return l->rmq(x,y);
		else return min(l->rmq(x,m),r->rmq(m+1,y));
	}
	void set(int x,ll add=0) {
		value();
		add = max(add, lazy[2]);
		if(s==e) {
			A[s] = add;
			v = spi(LLINF, pi(0, -1));
			return;
		}
		if(x>m) r->set(x, add);
		else l->set(x, add);
		l->value(), r->value();
		v = min(l->v, r->v);
	}
} *seg;
void update(int x,int y,pi nval) {
	x=cy(x), y=cy(y);
	if(x<=y) seg->update(x,y,nval);
	else seg->update(x,n-1,nval), seg->update(0,y,nval);
}
spi rmq(int x,int y) {
	x=cy(x), y=cy(y);
	if(x<=y) return seg->rmq(x, y);
	else return min(seg->rmq(x, n-1), seg->rmq(0, y));
}
struct node2 {
	int s,e,m;
	array<pi, 2> v;
	node2*l,*r;
	node2(int S,int E){
		s=S,e=E,m=(s+e)>>1;
		v = {pi(INF, -1), pi(-INF, -1)};
		if(s^e)l=new node2(s,m),r=new node2(m+1,e);
	}
	array<pi, 2> comb(array<pi, 2> x,array<pi, 2> y) {
		return array<pi, 2> {min(x[0], y[0]), max(x[1], y[1])};
	}
	array<pi, 2> rmq(int x,int y) {
		if(s==x&&e==y) return v;
		if(x>m) return r->rmq(x, y);
		else if(y<=m) return l->rmq(x, y);
		else return comb(l->rmq(x, m), r->rmq(m+1, y));
	}
	ll mx(int x,int y) {
		if(x <= y) return rmq(x, y)[1].s;
		else assert(0);
	}
	ll mi(int x,int y) {
		if(x <= y) return rmq(x, y)[0].s;
		else assert(0);
	}
	void set(int x) {
		if(s==e) {
			v = {pi(A[s%n], s), pi(A[s%n], s)};
			return;
		}
		if(x>m) r->set(x);
		else l->set(x);
		v = comb(l->v, r->v);
	}
} *seg2;
struct tree {
	int st[MAXN*2], en[MAXN*2];
	bitset<MAXN*2> r;
	vector<int> v[MAXN*2];
	tree() {
		mmst(st, 0), mmst(en, 0), r.set();
	}
	void add(int x,int y) {
		if(y==-1||x==y) return;
		r[x]=0, v[y].eb(x);
	}
	void solve() {
		ll co=1;
		function<void(ll)>dfs=[&](int x) {
			st[x]=co++;
			for(auto i:v[x]) dfs(i);
			en[x]=co-1;
		};
		FOR(i,0,n-1) if(r[i]) dfs(i);
	}
	bool isp(int a,int b) { return st[a]<=st[b]&&en[a]>=en[b]; }
} t[2];
void init(int K, std::vector<int> r) { k=K, R=r;
	n=r.size();
	seg=new node(0, n-1);
	FOR(i,0,n-1) if(r[i]==0) update(i+1, i+k-1, pi(1, 1));
	while(1) {
		start = seg->rmq(0, n-1).s.s;
		if(start == -1) break;
		seg->set(start);
		update(start+1, start+k-1, pi(A[start]+1, 2));
		update(start+1, start+k-1, pi(-1, 1));
		update(start-k+1, start-1, pi(A[start]+1, 2));
		update(start-k+1, start-1, pi(-1, 0));
		vector<int> tmp;
		while(1) {
			spi x = rmq(start-k+1, start-1);
			if(x.f == 0) {
				tmp.eb(x.s.s);
				update(x.s.s+1, x.s.s+k-1, pi(1, 1));
				update(x.s.s, x.s.s, pi(1, 0));
			} else break;
		}
		for(auto i:tmp) update(i, i, pi(-1, 0));
	}
	/* dp[0][0]=dp[1][0]=1;
	FOR(i,0,1) fw[i].update(A[0], 1);
	FOR(i,1,n-1) {
		// FOR(jj,i-k+1,i-1) { int j=cy(jj);
			// assert(A[i] ^ A[j]);
			// if(A[i] < A[j]) dp[0][i] |= dp[0][j];
			// else dp[1][i] |= dp[1][j];
		// }
		if(i >= k) FOR(j,0,1) if(dp[j][i-k]) fw[j].update(A[i-k], -1);
		dp[0][i] = fw[0].sum(A[i]+1, MAXN-2) > 0;
		dp[1][i] = fw[1].sum(0, A[i]-1) > 0;
		FOR(j,0,1) if(dp[j][i]) fw[j].update(A[i], 1);
	}
	fw[0]=fen(), fw[1]=fen();
	dp2[0][0]=dp2[1][0]=1;
	FOR(i,0,1) fw[i].update(A[0], 1);
	DEC(ii,-1,-n+1) { int i=cy(ii);
		// FOR(jj,i+1,i+k-1) { int j=cy(jj);
			// assert(A[i] ^ A[j]);
			// if(A[i] < A[j]) dp2[0][i] |= dp2[0][j];
			// else dp2[1][i] |= dp2[1][j];
		// }
		int t = cy(i + k);
		if(t > i || t == 0) {
			FOR(j,0,1) if(dp2[j][t]) fw[j].update(A[t], -1);
		}
		dp2[0][i] = fw[0].sum(A[i]+1, MAXN-2) > 0;
		dp2[1][i] = fw[1].sum(0, A[i]-1) > 0;
		FOR(j,0,1) if(dp2[j][i]) fw[j].update(A[i], 1);
	} */
	
	vector<int> p;
	FOR(i,0,n-1) p.eb(i), p.eb(i+n);
	sort(all(p), [](int x,int y){return A[x%n]<A[y%n];});
	seg2=new node2(0, 2*n-1);
	for(auto i:p) {
		int target = seg2->mx(i, min(2*n-1, i+k-1)); // connect to shortest tower within k that is taller than you
		t[0].add(i, target);
		seg2->set(i);
	}
	
	sort(all(p), [](int x,int y){return A[x%n]>A[y%n];});
	seg2=new node2(0, 2*n-1);
	for(auto i:p) {
		int target = seg2->mi(i, min(2*n-1, i+k-1));
		t[1].add(i, target);
		seg2->set(i);
	}
	// FOR(i,0,n-1) {
		// int target = seg2->mi(i, i-k+1);
		// t[2].add(i, target);
	// }
	// FOR(i,0,n-1) {
		// int target = seg2->mx(i, i-k+1);
		// t[3].add(i, target);
	// }
	FOR(i,0,1) t[i].solve();
}
int compare_plants(int x, int y) {
	/* if(x == 0) {
		if(dp[0][y] || dp2[0][y]) return -1;
		else if(dp[1][y] || dp2[1][y]) return 1;
		else return 0;
	}
	if(n > 300 || reach[x][y] || reach[y][x]) return A[x] < A[y] ? 1 : -1;
	else return 0; */
	
	if(dist(x, y) < k) {
		return A[x] < A[y] ? 1 : -1;
	}
	
	FOR(i,y,y+k-1) {
		if(A[y] <= A[i%n]) {
			if(t[0].isp(i, x)) { if(0) assert(A[i%n] < A[x]); return -1; }
		}
	}
	FOR(i,y,y+k-1) {
		if(A[y] >= A[i%n]) {
			if(t[1].isp(i, x)) { if(0) assert(A[x] < A[i%n]); return 1; }
		}
	}
	swap(x, y);
	y += n;
	FOR(i,y,min(2*n-1, y+k-1)) {
		if(A[y%n] <= A[i%n]) {
			if(t[0].isp(i, x)) { if(0) assert(A[i%n] < A[x%n]); return 1; }
		}
	}
	FOR(i,y,min(2*n-1, y+k-1)) {
		if(A[y%n] >= A[i%n]) {
			if(t[1].isp(i, x)) { if(0) assert(A[x%n] < A[i%n]); return -1; }
		}
	}
	
	return 0;
}
# Verdict Execution time Memory Grader output
1 Correct 17 ms 25452 KB Output is correct
2 Correct 17 ms 25452 KB Output is correct
3 Correct 17 ms 25452 KB Output is correct
4 Incorrect 17 ms 25452 KB Output isn't correct
5 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 18 ms 25452 KB Output is correct
2 Correct 16 ms 25452 KB Output is correct
3 Correct 17 ms 25452 KB Output is correct
4 Correct 17 ms 25452 KB Output is correct
5 Correct 17 ms 25580 KB Output is correct
6 Correct 26 ms 26476 KB Output is correct
7 Correct 135 ms 33004 KB Output is correct
8 Correct 19 ms 25580 KB Output is correct
9 Correct 27 ms 26476 KB Output is correct
10 Correct 135 ms 33132 KB Output is correct
11 Correct 112 ms 33260 KB Output is correct
12 Correct 114 ms 33388 KB Output is correct
13 Correct 128 ms 33004 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 18 ms 25452 KB Output is correct
2 Correct 16 ms 25452 KB Output is correct
3 Correct 17 ms 25452 KB Output is correct
4 Correct 17 ms 25452 KB Output is correct
5 Correct 17 ms 25580 KB Output is correct
6 Correct 26 ms 26476 KB Output is correct
7 Correct 135 ms 33004 KB Output is correct
8 Correct 19 ms 25580 KB Output is correct
9 Correct 27 ms 26476 KB Output is correct
10 Correct 135 ms 33132 KB Output is correct
11 Correct 112 ms 33260 KB Output is correct
12 Correct 114 ms 33388 KB Output is correct
13 Correct 128 ms 33004 KB Output is correct
14 Correct 364 ms 46796 KB Output is correct
15 Execution timed out 4078 ms 208976 KB Time limit exceeded
16 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 16 ms 25452 KB Output is correct
2 Correct 17 ms 25452 KB Output is correct
3 Correct 108 ms 30188 KB Output is correct
4 Correct 1651 ms 212956 KB Output is correct
5 Incorrect 2515 ms 215508 KB Output isn't correct
6 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 17 ms 25452 KB Output is correct
2 Correct 17 ms 25452 KB Output is correct
3 Incorrect 16 ms 25452 KB Output isn't correct
4 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 17 ms 25452 KB Output is correct
2 Correct 17 ms 25452 KB Output is correct
3 Correct 18 ms 25452 KB Output is correct
4 Correct 17 ms 25452 KB Output is correct
5 Incorrect 25 ms 26348 KB Output isn't correct
6 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 17 ms 25452 KB Output is correct
2 Correct 17 ms 25452 KB Output is correct
3 Correct 17 ms 25452 KB Output is correct
4 Incorrect 17 ms 25452 KB Output isn't correct
5 Halted 0 ms 0 KB -