Submission #349362

# Submission time Handle Problem Language Result Execution time Memory
349362 2021-01-17T13:05:36 Z ACmachine Sky Walking (IOI19_walk) C++17
39 / 100
2690 ms 509284 KB
#include "walk.h"
 
#include <bits/stdc++.h>
using namespace std;
 
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace __gnu_pbds;
 
template<typename T> using ordered_set = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
template<typename T, typename U> using ordered_map = tree<T, U, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
 
typedef long long ll;
typedef long double ld;
typedef double db;
typedef string str;
 
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;
 
typedef vector<int> vi;
typedef vector<ll> vll;
typedef vector<pii> vpii;
typedef vector<pll> vpll;
typedef vector<str> vstr;
 
#define FOR(i,j,k,in) for(int i=(j); i < (k);i+=in)
#define FORD(i,j,k,in) for(int i=(j); i >=(k);i-=in)
#define REP(i,b) FOR(i,0,b,1)
#define REPD(i,b) FORD(i,b,0,1)
#define pb push_back 
#define mp make_pair
#define ff first
#define ss second
#define all(x) begin(x), end(x)
#define rsz resize 
#define MANY_TESTS int tcase; cin >> tcase; while(tcase--)
	
const double EPS = 1e-9;
const int MOD = 1e9+7; // 998244353;
const ll INFF = 1e18;
const int INF = 1e9;
const ld PI = acos((ld)-1);
const vi dy = {1, 0, -1, 0, -1, 1, 1, -1};
const vi dx = {0, 1, 0, -1, -1, 1, -1, 1};
 
#ifdef DEBUG
#define DBG if(1)
#else
#define DBG if(0)
#endif
 
#define dbg(x) cout << "(" << #x << " : " << x << ")" << endl;
// ostreams
template <class T, class U>
ostream& operator<<(ostream& out, const pair<T, U> &par) {out << "[" << par.first << ";" << par.second << "]"; return out;}
template <class T>
ostream& operator<<(ostream& out, const set<T> &cont) { out << "{"; for( const auto &x:cont) out << x << ", "; out << "}"; return out; }
template <class T, class U>
ostream& operator<<(ostream& out, const map<T, U> &cont) {out << "{"; for( const auto &x:cont) out << x << ", "; out << "}"; return out; }
template<class T>
ostream& operator<<(ostream& out, const vector<T> &v){ out << "[";  REP(i, v.size()) out << v[i] << ", ";  out << "]"; return out;}
// istreams
template<class T>
istream& operator>>(istream& in, vector<T> &v){ for(auto &x : v) in >> x; return in; }
template<class T, class U>
istream& operator>>(istream& in, pair<T, U> &p){ in >> p.ff >> p.ss; return in; }
//searches
template<typename T, typename U>
T bsl(T lo, T hi, U f){ hi++; T mid; while(lo < hi){ mid = (lo + hi)/2; f(mid) ? hi = mid : lo = mid+1; } return lo; }
template<typename U>
double bsld(double lo, double hi, U f, double p = 1e-9){ int r = 3 + (int)log2((hi - lo)/p); double mid; while(r--){ mid = (lo + hi)/2; f(mid) ? hi = mid : lo = mid; } return (lo + hi)/2; }
template<typename T, typename U>
T bsh(T lo, T hi, U f){ lo--; T mid; while(lo < hi){ mid = (lo + hi + 1)/2; f(mid) ? lo = mid : hi = mid-1; } return lo; }
template<typename U>
double bshd(double lo, double hi, U f, double p = 1e-9){ int r = 3+(int)log2((hi - lo)/p); double mid; while(r--){ mid = (lo + hi)/2; f(mid) ? lo = mid : hi = mid; } return (lo + hi)/2; }
// some more utility functions
template<typename T>
pair<T, int> get_min(vector<T> &v){ typename vector<T> :: iterator it = min_element(v.begin(), v.end()); return mp(*it, it - v.begin());}
template<typename T>
pair<T, int> get_max(vector<T> &v){ typename vector<T> :: iterator it = max_element(v.begin(), v.end()); return mp(*it, it - v.begin());}        
template<typename T> bool ckmin(T& a, const T& b){return b < a ? a = b , true : false;}
template<typename T> bool ckmax(T& a, const T& b){return b > a ? a = b, true : false;}
 
 
 
 
 
long long dijkstra(int s, int e, vector<vector<array<int, 2>>> &adj){
    vector<ll> dist(adj.size(), -1);
    priority_queue<pll, vector<pll>, greater<pll>> pq;
    pq.push({0, s});
    while(!pq.empty()){
        while(!pq.empty() && dist[pq.top().ss] != -1) pq.pop();
        if(pq.empty()) break;
        int v = pq.top().ss;
        dist[v] = pq.top().ff;
        pq.pop();
        for(auto x : adj[v]){
            if(dist[x[0]] == -1){
                pq.push({dist[v] + x[1], x[0]});
            }
        }
    }
    return dist[e];
}
long long solve3(vector<int> x, vector<int> h, vector<int> l, vector<int> r, vector<int> y, int s, int g){
    int n = x.size(); int m = l.size();
    int mx = 1000000;
    vector<vector<array<int, 2>>> adj(mx);
    set<array<int, 3>> open_edges; 
    vector<vi> starts(n);
    vector<vi> ends(n);
    vector<vi> points(n);
    map<pair<int, int>, int> compression;
    REP(i, m){
        starts[l[i]].pb(i);
        ends[r[i]].pb(i);
        points[l[i]].pb(y[i]);
        points[r[i]].pb(y[i]);
    }
    points[0].pb(0);
    points[n - 1].pb(0);
    int vid = 0;
    REP(i, n){
        sort(all(points[i]));
        REP(j, ends[i].size()){
            int id = ends[i][j];
            open_edges.erase({y[id], l[id], r[id]});
        }
        REPD(j, (int)points[i].size() - 1){
            int nxt = -1;
            if(j != 0) nxt = max(nxt, points[i][j-1]);
            auto it = open_edges.lower_bound({points[i][j], -INF, -INF});
            if(it != open_edges.begin()){
                it--;
                if(nxt <= (*it)[0]){
                    if(compression.find(mp(i, (*it)[0])) == compression.end()){
                        compression[{i, (*it)[0]}] = vid++;
                    }
                    int r = (*it)[2];
                    if(compression.find(mp(r, (*it)[0])) == compression.end()){
                        compression[{r, (*it)[0]}] = vid++;
                    }
                    int s = compression[{i, (*it)[0]}];
                    int e = compression[{r, (*it)[0]}];
                    adj[s].pb({e, abs(x[i] - x[r])});
                    adj[e].pb({s, abs(x[i] - x[r])});  
                    
                }
                nxt = max(nxt, (*it)[0]); 
            }
            if(compression.find({i, points[i][j]}) == compression.end()){
                compression[{i, points[i][j]}] = vid++;
            }
            if(nxt == -1) continue; 
            if(compression.find({i, nxt}) == compression.end()){
                compression[{i, nxt}] = vid++;
            }
            int s = compression[{i, points[i][j]}];
            int e = compression[{i, nxt}];
            adj[s].pb({e, abs(points[i][j] - nxt)});
            adj[e].pb({s, abs(points[i][j] - nxt)}); 
        }
        REP(j, starts[i].size()){
            int id = starts[i][j];
            open_edges.insert({y[id], l[id], r[id]});
            if(compression.find({r[id], y[id]}) == compression.end()){
                compression[{r[id], y[id]}] = vid++;
            }
            if(compression.find({i, y[id]}) == compression.end()){
                compression[{i, y[id]}] = vid++;
            }
            int s = compression[{i, y[id]}];
            int e = compression[{r[id], y[id]}]; 
            adj[s].pb({e, abs(x[i] - x[r[id]])});
            adj[e].pb({s, abs(x[i] - x[r[id]])});
        }   
    }
    if(compression.find({s, 0}) == compression.end()){
        compression[{s, 0}] = vid++;
    }
    if(compression.find({g, 0}) == compression.end()){
        compression[{g, 0}] = vid++;
    }
    //dbg(vid)
    /* for(auto x : compression) { */
    /*     dbg(mp(x.ff[0], x.ff[1])) */
    /* } */
    /* REP(i, 20){ */
    /*     for(auto x : adj[i]){ */
    /*         cout << i << " " << x[0] << " " << x[1] << "\n"; */
    /*     } */
    /* } */
    return dijkstra(compression[{s, 0}], compression[{g, 0}], adj);
}
long long solve_12(vector<int> x, vector<int> h, vector<int> l, vector<int> r, vector<int> y, int s, int g){
    int n = x.size(); int m = l.size();
    vector<vector<array<int, 2>>> adj(2000000);
    map<array<int, 2>, int> compression;
    int vid = 0;
    auto _alloc = [&](array<int, 2> nw){
        if(compression.find(nw) == compression.end()){
            compression[nw] = vid++;
        }
    };
    vector<vi> points(n);
    points[s].pb(0); points[g].pb(0);
    /* REP(i, m){ */ // for subtask 2, I have to alter this, so that I only traverse the places that I intersect
    /*     int prev = l[i]; */
    /*     points[prev].pb(y[i]); */
    /*     FOR(j, l[i] + 1, r[i] + 1, 1){ */
    /*         if(h[j] < y[i]) continue; */
    /*         _alloc({j, y[i]}); */
    /*         _alloc({prev, y[i]}); */
    /*         int s = compression[{j, y[i]}]; */
    /*         int e = compression[{prev, y[i]}]; */
    /*         adj[s].pb({e, abs(x[j] - x[prev])}); */
    /*         adj[e].pb({s, abs(x[j] - x[prev])}); */
    /*         prev = j; */
    /*         points[j].pb(y[i]); */
    /*     } */
    /* } */
    vector<array<int, 3>> edges;
    REP(i, m) edges.pb({y[i], l[i], r[i]});
    sort(all(edges));
    set<array<int, 2>> buildings;
    vector<array<int, 2>> bv;
    REP(i, n){
        buildings.insert({i, h[i]});
        bv.pb({h[i], i});
    }
    sort(all(bv));
    int pp = 0;
    REP(i, edges.size()){
        while(pp < bv.size() && bv[pp][0] < edges[i][0]){
            buildings.erase({bv[pp][1], bv[pp][0]});
            pp++;
        }
        int prev = -1;
        set<array<int, 2>> :: iterator it = buildings.lower_bound({edges[i][1], -INF});
        while(it != buildings.end() && (*it)[0] <= edges[i][2]){
            points[(*it)[0]].pb(edges[i][0]);
            int y = edges[i][0];
            if(prev != -1){
                _alloc({prev, y});
                _alloc({(*it)[0], y});
                int s = compression[{prev, y}];
                int e = compression[{(*it)[0], y}];
                int curr = (*it)[0];
                adj[s].pb({e, abs(x[prev] - x[curr])});
                adj[e].pb({s, abs(x[prev] - x[curr])});
            }
            prev = (*it)[0];
            it++;
        }
    }
    REP(i, n){
        sort(all(points[i]));
        reverse(all(points[i]));
        REP(j, (int)points[i].size() - 1){
            _alloc({i, points[i][j]});
            _alloc({i, points[i][j + 1]});
            int s = compression[{i, points[i][j]}];
            int e = compression[{i, points[i][j + 1]}];
            adj[s].pb({e, abs(points[i][j] - points[i][j + 1])});
            adj[e].pb({s, abs(points[i][j] - points[i][j + 1])});
        }
    }
    _alloc({s, 0}); _alloc({g, 0});
    return dijkstra(compression[{s, 0}], compression[{g, 0}], adj);
}
long long min_distance(std::vector<int> x, std::vector<int> h, std::vector<int> l, std::vector<int> r, std::vector<int> y, int s, int g) {
    bool allh = true;
    FOR(i, 1, h.size(), 1){
        if(h[i] != h[i-1]) allh = false;
    }
    
    if(allh) 
        return solve3(x, h, l, r, y, s, g);
    return solve_12(x, h, l, r, y, s, g);
}

Compilation message

walk.cpp: In function 'long long int solve3(std::vector<int>, std::vector<int>, std::vector<int>, std::vector<int>, std::vector<int>, int, int)':
walk.cpp:27:40: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
   27 | #define FOR(i,j,k,in) for(int i=(j); i < (k);i+=in)
      |                                        ^
walk.cpp:29:18: note: in expansion of macro 'FOR'
   29 | #define REP(i,b) FOR(i,0,b,1)
      |                  ^~~
walk.cpp:127:9: note: in expansion of macro 'REP'
  127 |         REP(j, ends[i].size()){
      |         ^~~
walk.cpp:27:40: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
   27 | #define FOR(i,j,k,in) for(int i=(j); i < (k);i+=in)
      |                                        ^
walk.cpp:29:18: note: in expansion of macro 'FOR'
   29 | #define REP(i,b) FOR(i,0,b,1)
      |                  ^~~
walk.cpp:165:9: note: in expansion of macro 'REP'
  165 |         REP(j, starts[i].size()){
      |         ^~~
walk.cpp: In function 'long long int solve_12(std::vector<int>, std::vector<int>, std::vector<int>, std::vector<int>, std::vector<int>, int, int)':
walk.cpp:27:40: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<std::array<int, 3> >::size_type' {aka 'long unsigned int'} [-Wsign-compare]
   27 | #define FOR(i,j,k,in) for(int i=(j); i < (k);i+=in)
      |                                        ^
walk.cpp:29:18: note: in expansion of macro 'FOR'
   29 | #define REP(i,b) FOR(i,0,b,1)
      |                  ^~~
walk.cpp:235:5: note: in expansion of macro 'REP'
  235 |     REP(i, edges.size()){
      |     ^~~
walk.cpp:236:18: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<std::array<int, 2> >::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  236 |         while(pp < bv.size() && bv[pp][0] < edges[i][0]){
      |               ~~~^~~~~~~~~~~
walk.cpp: In function 'long long int min_distance(std::vector<int>, std::vector<int>, std::vector<int>, std::vector<int>, std::vector<int>, int, int)':
walk.cpp:27:40: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
   27 | #define FOR(i,j,k,in) for(int i=(j); i < (k);i+=in)
      |                                        ^
walk.cpp:275:5: note: in expansion of macro 'FOR'
  275 |     FOR(i, 1, h.size(), 1){
      |     ^~~
# Verdict Execution time Memory Grader output
1 Correct 42 ms 62956 KB Output is correct
2 Correct 22 ms 31596 KB Output is correct
3 Correct 42 ms 62956 KB Output is correct
4 Correct 42 ms 62956 KB Output is correct
5 Correct 43 ms 63084 KB Output is correct
6 Correct 43 ms 63084 KB Output is correct
7 Correct 43 ms 63084 KB Output is correct
8 Correct 42 ms 62956 KB Output is correct
9 Correct 42 ms 62956 KB Output is correct
10 Correct 43 ms 63104 KB Output is correct
11 Correct 43 ms 62968 KB Output is correct
12 Correct 42 ms 62956 KB Output is correct
13 Correct 42 ms 62956 KB Output is correct
14 Correct 42 ms 62956 KB Output is correct
15 Correct 44 ms 62956 KB Output is correct
16 Correct 42 ms 62956 KB Output is correct
17 Correct 43 ms 63084 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 42 ms 62956 KB Output is correct
2 Correct 21 ms 31596 KB Output is correct
3 Correct 2080 ms 165988 KB Output is correct
4 Correct 1854 ms 166844 KB Output is correct
5 Correct 1280 ms 152116 KB Output is correct
6 Correct 1174 ms 141736 KB Output is correct
7 Correct 1285 ms 152460 KB Output is correct
8 Correct 2654 ms 194880 KB Output is correct
9 Correct 1543 ms 151712 KB Output is correct
10 Correct 2641 ms 209508 KB Output is correct
11 Correct 1016 ms 117988 KB Output is correct
12 Correct 686 ms 101732 KB Output is correct
13 Correct 2185 ms 193892 KB Output is correct
14 Correct 471 ms 98532 KB Output is correct
15 Correct 427 ms 98524 KB Output is correct
16 Correct 415 ms 100324 KB Output is correct
17 Correct 447 ms 98916 KB Output is correct
18 Correct 467 ms 103140 KB Output is correct
19 Correct 54 ms 64620 KB Output is correct
20 Correct 196 ms 80360 KB Output is correct
21 Correct 373 ms 99940 KB Output is correct
22 Correct 387 ms 102884 KB Output is correct
23 Correct 484 ms 106084 KB Output is correct
24 Correct 391 ms 99812 KB Output is correct
25 Correct 451 ms 100000 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 142 ms 43444 KB Output is correct
2 Correct 816 ms 76912 KB Output is correct
3 Correct 915 ms 79472 KB Output is correct
4 Correct 1043 ms 91628 KB Output is correct
5 Correct 1322 ms 93668 KB Output is correct
6 Correct 1322 ms 92952 KB Output is correct
7 Correct 458 ms 68840 KB Output is correct
8 Correct 404 ms 72812 KB Output is correct
9 Correct 1115 ms 93280 KB Output is correct
10 Correct 470 ms 72680 KB Output is correct
11 Correct 37 ms 36332 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 142 ms 43444 KB Output is correct
2 Correct 816 ms 76912 KB Output is correct
3 Correct 915 ms 79472 KB Output is correct
4 Correct 1043 ms 91628 KB Output is correct
5 Correct 1322 ms 93668 KB Output is correct
6 Correct 1322 ms 92952 KB Output is correct
7 Correct 458 ms 68840 KB Output is correct
8 Correct 404 ms 72812 KB Output is correct
9 Correct 1115 ms 93280 KB Output is correct
10 Correct 470 ms 72680 KB Output is correct
11 Correct 37 ms 36332 KB Output is correct
12 Runtime error 2690 ms 509284 KB Execution killed with signal 11 (could be triggered by violating memory limits)
13 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 42 ms 62956 KB Output is correct
2 Correct 22 ms 31596 KB Output is correct
3 Correct 42 ms 62956 KB Output is correct
4 Correct 42 ms 62956 KB Output is correct
5 Correct 43 ms 63084 KB Output is correct
6 Correct 43 ms 63084 KB Output is correct
7 Correct 43 ms 63084 KB Output is correct
8 Correct 42 ms 62956 KB Output is correct
9 Correct 42 ms 62956 KB Output is correct
10 Correct 43 ms 63104 KB Output is correct
11 Correct 43 ms 62968 KB Output is correct
12 Correct 42 ms 62956 KB Output is correct
13 Correct 42 ms 62956 KB Output is correct
14 Correct 42 ms 62956 KB Output is correct
15 Correct 44 ms 62956 KB Output is correct
16 Correct 42 ms 62956 KB Output is correct
17 Correct 43 ms 63084 KB Output is correct
18 Correct 42 ms 62956 KB Output is correct
19 Correct 21 ms 31596 KB Output is correct
20 Correct 2080 ms 165988 KB Output is correct
21 Correct 1854 ms 166844 KB Output is correct
22 Correct 1280 ms 152116 KB Output is correct
23 Correct 1174 ms 141736 KB Output is correct
24 Correct 1285 ms 152460 KB Output is correct
25 Correct 2654 ms 194880 KB Output is correct
26 Correct 1543 ms 151712 KB Output is correct
27 Correct 2641 ms 209508 KB Output is correct
28 Correct 1016 ms 117988 KB Output is correct
29 Correct 686 ms 101732 KB Output is correct
30 Correct 2185 ms 193892 KB Output is correct
31 Correct 471 ms 98532 KB Output is correct
32 Correct 427 ms 98524 KB Output is correct
33 Correct 415 ms 100324 KB Output is correct
34 Correct 447 ms 98916 KB Output is correct
35 Correct 467 ms 103140 KB Output is correct
36 Correct 54 ms 64620 KB Output is correct
37 Correct 196 ms 80360 KB Output is correct
38 Correct 373 ms 99940 KB Output is correct
39 Correct 387 ms 102884 KB Output is correct
40 Correct 484 ms 106084 KB Output is correct
41 Correct 391 ms 99812 KB Output is correct
42 Correct 451 ms 100000 KB Output is correct
43 Correct 142 ms 43444 KB Output is correct
44 Correct 816 ms 76912 KB Output is correct
45 Correct 915 ms 79472 KB Output is correct
46 Correct 1043 ms 91628 KB Output is correct
47 Correct 1322 ms 93668 KB Output is correct
48 Correct 1322 ms 92952 KB Output is correct
49 Correct 458 ms 68840 KB Output is correct
50 Correct 404 ms 72812 KB Output is correct
51 Correct 1115 ms 93280 KB Output is correct
52 Correct 470 ms 72680 KB Output is correct
53 Correct 37 ms 36332 KB Output is correct
54 Runtime error 2690 ms 509284 KB Execution killed with signal 11 (could be triggered by violating memory limits)
55 Halted 0 ms 0 KB -