Submission #345850

# Submission time Handle Problem Language Result Execution time Memory
345850 2021-01-08T09:55:20 Z ACmachine Boat (APIO16_boat) C++17
100 / 100
572 ms 2540 KB
#include <bits/stdc++.h>
using namespace std;

#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace __gnu_pbds;

template<typename T> using ordered_set = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
template<typename T, typename U> using ordered_map = tree<T, U, less<T>, rb_tree_tag, tree_order_statistics_node_update>;

typedef long long ll;
typedef long double ld;
typedef double db;
typedef string str;

typedef pair<int,int> pii;
typedef pair<ll,ll> pll;

typedef vector<int> vi;
typedef vector<ll> vll;
typedef vector<pii> vpii;
typedef vector<pll> vpll;
typedef vector<str> vstr;

#define FOR(i,j,k,in) for(int i=(j); i < (k);i+=in)
#define FORD(i,j,k,in) for(int i=(j); i >=(k);i-=in)
#define REP(i,b) FOR(i,0,b,1)
#define REPD(i,b) FORD(i,b,0,1)
#define pb push_back 
#define mp make_pair
#define ff first
#define ss second
#define all(x) begin(x), end(x)
#define rsz resize 
#define MANY_TESTS int tcase; cin >> tcase; while(tcase--)
	
const double EPS = 1e-9;
const int MOD = 1e9+7; // 998244353;
const ll INFF = 1e18;
const int INF = 1e9;
const ld PI = acos((ld)-1);
const vi dy = {1, 0, -1, 0, -1, 1, 1, -1};
const vi dx = {0, 1, 0, -1, -1, 1, -1, 1};

#ifdef DEBUG
#define DBG if(1)
#else
#define DBG if(0)
#endif

#define dbg(x) cout << "(" << #x << " : " << x << ")" << endl;
// ostreams
template <class T, class U>
ostream& operator<<(ostream& out, const pair<T, U> &par) {out << "[" << par.first << ";" << par.second << "]"; return out;}
template <class T>
ostream& operator<<(ostream& out, const set<T> &cont) { out << "{"; for( const auto &x:cont) out << x << ", "; out << "}"; return out; }
template <class T, class U>
ostream& operator<<(ostream& out, const map<T, U> &cont) {out << "{"; for( const auto &x:cont) out << x << ", "; out << "}"; return out; }
template<class T>
ostream& operator<<(ostream& out, const vector<T> &v){ out << "[";  REP(i, v.size()) out << v[i] << ", ";  out << "]"; return out;}
// istreams
template<class T>
istream& operator>>(istream& in, vector<T> &v){ for(auto &x : v) in >> x; return in; }
template<class T, class U>
istream& operator>>(istream& in, pair<T, U> &p){ in >> p.ff >> p.ss; return in; }
//searches
template<typename T, typename U>
T bsl(T lo, T hi, U f){ hi++; T mid; while(lo < hi){ mid = (lo + hi)/2; f(mid) ? hi = mid : lo = mid+1; } return lo; }
template<typename U>
double bsld(double lo, double hi, U f, double p = 1e-9){ int r = 3 + (int)log2((hi - lo)/p); double mid; while(r--){ mid = (lo + hi)/2; f(mid) ? hi = mid : lo = mid; } return (lo + hi)/2; }
template<typename T, typename U>
T bsh(T lo, T hi, U f){ lo--; T mid; while(lo < hi){ mid = (lo + hi + 1)/2; f(mid) ? lo = mid : hi = mid-1; } return lo; }
template<typename U>
double bshd(double lo, double hi, U f, double p = 1e-9){ int r = 3+(int)log2((hi - lo)/p); double mid; while(r--){ mid = (lo + hi)/2; f(mid) ? lo = mid : hi = mid; } return (lo + hi)/2; }
// some more utility functions
template<typename T>
pair<T, int> get_min(vector<T> &v){ typename vector<T> :: iterator it = min_element(v.begin(), v.end()); return mp(*it, it - v.begin());}
template<typename T>
pair<T, int> get_max(vector<T> &v){ typename vector<T> :: iterator it = max_element(v.begin(), v.end()); return mp(*it, it - v.begin());}        
template<typename T> bool ckmin(T& a, const T& b){return b < a ? a = b , true : false;}
template<typename T> bool ckmax(T& a, const T& b){return b > a ? a = b, true : false;}

   
const int mod = (int)1e9+7;
struct Mint{
    int val;
    Mint(){ val = 0; }
    Mint(long long v){
        val = (-mod <= v && v < mod) ? v : v%mod;
        if(val < 0) val+= mod;
    }
    // operators
    Mint operator-(){return Mint(-val);}
    Mint& operator+=(const Mint& other){ val+=other.val; if(val >= mod) val-=mod; return *this;}
    Mint& operator-=(const Mint& other){ val-=other.val; if(val < 0) val+=mod; return *this;}
    Mint& operator*=(const Mint& other){ val=((long long)val*other.val)%mod; return *this;}
    friend Mint binpow(Mint a, long long p){
        Mint res(1);
        while(p > 0){
            if(p&1) res*=a; a*=a; p>>=1;
        }
        return res;
    }
    friend Mint inv(Mint a){ return binpow(a, mod-2); }
    Mint& operator/=(const Mint &other){ return (*this)*=inv(other);}
    
    friend Mint operator+(Mint a, const Mint& b){ return a+=b; }
    friend Mint operator-(Mint a, const Mint& b){ return a-=b; }
    friend Mint operator*(Mint a, const Mint& b){ return a*=b; }
    friend Mint operator/(Mint a, const Mint& b){ return a/=b; }
    
    bool operator==(const Mint &other){return val == other.val;}
    bool operator!=(const Mint &other){return val != other.val;}
    bool operator<(const Mint &other){return val < other.val;}
    // io
    friend ostream& operator<<(ostream &out, Mint &a){ return out << a.val; }
};
int main(){
 	ios_base::sync_with_stdio(false);
 	cin.tie(NULL); cout.tie(NULL);
    vector<Mint> I(1000);
    FOR(i, 1, 1000, 1) I[i] = Mint(1) / Mint(i);
	int n; cin >> n;
    vector<array<int, 2>> orig_ranges;
    vi comp;
    REP(i, n){
        int a, b;
        cin >> a >> b;
        b++; // [a, b)
        orig_ranges.pb({a, b});
        comp.pb(a);
        comp.pb(b);
    }
    sort(all(comp));
    comp.erase(unique(all(comp)), comp.end());
    vector<array<ll, 2>> ranges(n);
    REP(i, n){
        int l = lower_bound(all(comp), orig_ranges[i][0]) - comp.begin();
        int r = lower_bound(comp.begin() + l + 1, comp.end(), orig_ranges[i][1]) - comp.begin();
        r--;
        ranges[i] = {l + 1, r + 1};
        //dbg(mp(l+1, r+1));
        //cout << l + 1 << " " << r + 1 << endl;
    }
    int m = (int)comp.size() + 2;
    vector<vector<Mint>> dp(n + 5, vector<Mint>(m + 5, Mint(0))); // dp[i][j] - divide first i elements into j groups
    REP(i, m + 4){
        dp[0][i] = Mint(1);
    }
    FOR(i, 1, n+1, 1){
        FOR(j, ranges[i - 1][0], ranges[i - 1][1] + 1, 1){
            int len = comp[j] - comp[j - 1];
            Mint prod = Mint(len - 1);
            int cnt = 1;
            dp[i][j] += Mint(len) * dp[i-1][j-1];
            FORD(k, i - 1, 1, 1){
                if(j >= ranges[k - 1][0] && ranges[k - 1][1] >= j){
                    prod *= Mint(len -1 + cnt);
                    prod *= I[cnt + 1];
                    cnt++;
                    dp[i][j] += prod * dp[k-1][j-1]; 
                } 
            }
        } 
        dp[i][0] = Mint(1);
        FOR(j, 1, m+1, 1){
            dp[i][j] = (dp[i][j] + dp[i][j-1] + dp[i-1][j] - dp[i-1][j-1]); 
        }  
    }
    Mint ans = dp[n][m] - Mint(1);
    cout << ans << "\n";
	
    return 0;
}

Compilation message

boat.cpp: In function 'Mint binpow(Mint, long long int)':
boat.cpp:101:13: warning: this 'if' clause does not guard... [-Wmisleading-indentation]
  101 |             if(p&1) res*=a; a*=a; p>>=1;
      |             ^~
boat.cpp:101:29: note: ...this statement, but the latter is misleadingly indented as if it were guarded by the 'if'
  101 |             if(p&1) res*=a; a*=a; p>>=1;
      |                             ^
# Verdict Execution time Memory Grader output
1 Correct 5 ms 2412 KB Output is correct
2 Correct 5 ms 2412 KB Output is correct
3 Correct 5 ms 2412 KB Output is correct
4 Correct 5 ms 2412 KB Output is correct
5 Correct 5 ms 2412 KB Output is correct
6 Correct 5 ms 2412 KB Output is correct
7 Correct 5 ms 2412 KB Output is correct
8 Correct 5 ms 2412 KB Output is correct
9 Correct 5 ms 2412 KB Output is correct
10 Correct 5 ms 2412 KB Output is correct
11 Correct 5 ms 2412 KB Output is correct
12 Correct 5 ms 2412 KB Output is correct
13 Correct 5 ms 2412 KB Output is correct
14 Correct 6 ms 2412 KB Output is correct
15 Correct 5 ms 2412 KB Output is correct
16 Correct 2 ms 748 KB Output is correct
17 Correct 3 ms 748 KB Output is correct
18 Correct 2 ms 748 KB Output is correct
19 Correct 2 ms 748 KB Output is correct
20 Correct 2 ms 748 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 5 ms 2412 KB Output is correct
2 Correct 5 ms 2412 KB Output is correct
3 Correct 5 ms 2412 KB Output is correct
4 Correct 5 ms 2412 KB Output is correct
5 Correct 5 ms 2412 KB Output is correct
6 Correct 5 ms 2412 KB Output is correct
7 Correct 5 ms 2412 KB Output is correct
8 Correct 5 ms 2412 KB Output is correct
9 Correct 5 ms 2412 KB Output is correct
10 Correct 5 ms 2412 KB Output is correct
11 Correct 5 ms 2412 KB Output is correct
12 Correct 5 ms 2412 KB Output is correct
13 Correct 5 ms 2412 KB Output is correct
14 Correct 6 ms 2412 KB Output is correct
15 Correct 5 ms 2412 KB Output is correct
16 Correct 2 ms 748 KB Output is correct
17 Correct 3 ms 748 KB Output is correct
18 Correct 2 ms 748 KB Output is correct
19 Correct 2 ms 748 KB Output is correct
20 Correct 2 ms 748 KB Output is correct
21 Correct 239 ms 2284 KB Output is correct
22 Correct 233 ms 2412 KB Output is correct
23 Correct 205 ms 2284 KB Output is correct
24 Correct 224 ms 2156 KB Output is correct
25 Correct 231 ms 2156 KB Output is correct
26 Correct 493 ms 2412 KB Output is correct
27 Correct 513 ms 2284 KB Output is correct
28 Correct 502 ms 2156 KB Output is correct
29 Correct 491 ms 2284 KB Output is correct
30 Correct 5 ms 2412 KB Output is correct
31 Correct 5 ms 2412 KB Output is correct
32 Correct 5 ms 2412 KB Output is correct
33 Correct 5 ms 2412 KB Output is correct
34 Correct 5 ms 2412 KB Output is correct
35 Correct 6 ms 2412 KB Output is correct
36 Correct 6 ms 2412 KB Output is correct
37 Correct 6 ms 2412 KB Output is correct
38 Correct 6 ms 2412 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 492 KB Output is correct
2 Correct 2 ms 492 KB Output is correct
3 Correct 4 ms 492 KB Output is correct
4 Correct 3 ms 492 KB Output is correct
5 Correct 3 ms 492 KB Output is correct
6 Correct 5 ms 492 KB Output is correct
7 Correct 5 ms 492 KB Output is correct
8 Correct 7 ms 492 KB Output is correct
9 Correct 5 ms 492 KB Output is correct
10 Correct 5 ms 492 KB Output is correct
11 Correct 3 ms 492 KB Output is correct
12 Correct 2 ms 512 KB Output is correct
13 Correct 3 ms 512 KB Output is correct
14 Correct 3 ms 492 KB Output is correct
15 Correct 3 ms 492 KB Output is correct
16 Correct 2 ms 364 KB Output is correct
17 Correct 2 ms 364 KB Output is correct
18 Correct 2 ms 364 KB Output is correct
19 Correct 2 ms 364 KB Output is correct
20 Correct 2 ms 364 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 5 ms 2412 KB Output is correct
2 Correct 5 ms 2412 KB Output is correct
3 Correct 5 ms 2412 KB Output is correct
4 Correct 5 ms 2412 KB Output is correct
5 Correct 5 ms 2412 KB Output is correct
6 Correct 5 ms 2412 KB Output is correct
7 Correct 5 ms 2412 KB Output is correct
8 Correct 5 ms 2412 KB Output is correct
9 Correct 5 ms 2412 KB Output is correct
10 Correct 5 ms 2412 KB Output is correct
11 Correct 5 ms 2412 KB Output is correct
12 Correct 5 ms 2412 KB Output is correct
13 Correct 5 ms 2412 KB Output is correct
14 Correct 6 ms 2412 KB Output is correct
15 Correct 5 ms 2412 KB Output is correct
16 Correct 2 ms 748 KB Output is correct
17 Correct 3 ms 748 KB Output is correct
18 Correct 2 ms 748 KB Output is correct
19 Correct 2 ms 748 KB Output is correct
20 Correct 2 ms 748 KB Output is correct
21 Correct 239 ms 2284 KB Output is correct
22 Correct 233 ms 2412 KB Output is correct
23 Correct 205 ms 2284 KB Output is correct
24 Correct 224 ms 2156 KB Output is correct
25 Correct 231 ms 2156 KB Output is correct
26 Correct 493 ms 2412 KB Output is correct
27 Correct 513 ms 2284 KB Output is correct
28 Correct 502 ms 2156 KB Output is correct
29 Correct 491 ms 2284 KB Output is correct
30 Correct 5 ms 2412 KB Output is correct
31 Correct 5 ms 2412 KB Output is correct
32 Correct 5 ms 2412 KB Output is correct
33 Correct 5 ms 2412 KB Output is correct
34 Correct 5 ms 2412 KB Output is correct
35 Correct 6 ms 2412 KB Output is correct
36 Correct 6 ms 2412 KB Output is correct
37 Correct 6 ms 2412 KB Output is correct
38 Correct 6 ms 2412 KB Output is correct
39 Correct 3 ms 492 KB Output is correct
40 Correct 2 ms 492 KB Output is correct
41 Correct 4 ms 492 KB Output is correct
42 Correct 3 ms 492 KB Output is correct
43 Correct 3 ms 492 KB Output is correct
44 Correct 5 ms 492 KB Output is correct
45 Correct 5 ms 492 KB Output is correct
46 Correct 7 ms 492 KB Output is correct
47 Correct 5 ms 492 KB Output is correct
48 Correct 5 ms 492 KB Output is correct
49 Correct 3 ms 492 KB Output is correct
50 Correct 2 ms 512 KB Output is correct
51 Correct 3 ms 512 KB Output is correct
52 Correct 3 ms 492 KB Output is correct
53 Correct 3 ms 492 KB Output is correct
54 Correct 2 ms 364 KB Output is correct
55 Correct 2 ms 364 KB Output is correct
56 Correct 2 ms 364 KB Output is correct
57 Correct 2 ms 364 KB Output is correct
58 Correct 2 ms 364 KB Output is correct
59 Correct 260 ms 2432 KB Output is correct
60 Correct 237 ms 2412 KB Output is correct
61 Correct 223 ms 2412 KB Output is correct
62 Correct 261 ms 2540 KB Output is correct
63 Correct 248 ms 2540 KB Output is correct
64 Correct 570 ms 2540 KB Output is correct
65 Correct 568 ms 2540 KB Output is correct
66 Correct 570 ms 2540 KB Output is correct
67 Correct 572 ms 2540 KB Output is correct
68 Correct 571 ms 2540 KB Output is correct
69 Correct 220 ms 2540 KB Output is correct
70 Correct 218 ms 2412 KB Output is correct
71 Correct 221 ms 2412 KB Output is correct
72 Correct 230 ms 2412 KB Output is correct
73 Correct 234 ms 2412 KB Output is correct
74 Correct 53 ms 748 KB Output is correct
75 Correct 51 ms 748 KB Output is correct
76 Correct 56 ms 748 KB Output is correct
77 Correct 53 ms 748 KB Output is correct
78 Correct 54 ms 748 KB Output is correct