#line 1 "main.cpp"
/**
* @title Template
*/
#include <iostream>
#include <algorithm>
#include <utility>
#include <numeric>
#include <vector>
#include <array>
#include <cassert>
#line 2 "/Users/kodamankod/Desktop/cpp_programming/Library/other/range.cpp"
#line 4 "/Users/kodamankod/Desktop/cpp_programming/Library/other/range.cpp"
class range {
struct iter {
std::size_t itr;
constexpr iter(std::size_t pos) noexcept: itr(pos) { }
constexpr void operator ++ () noexcept { ++itr; }
constexpr bool operator != (iter other) const noexcept { return itr != other.itr; }
constexpr std::size_t operator * () const noexcept { return itr; }
};
struct reviter {
std::size_t itr;
constexpr reviter(std::size_t pos) noexcept: itr(pos) { }
constexpr void operator ++ () noexcept { --itr; }
constexpr bool operator != (reviter other) const noexcept { return itr != other.itr; }
constexpr std::size_t operator * () const noexcept { return itr; }
};
const iter first, last;
public:
constexpr range(std::size_t first, std::size_t last) noexcept: first(first), last(std::max(first, last)) { }
constexpr iter begin() const noexcept { return first; }
constexpr iter end() const noexcept { return last; }
constexpr reviter rbegin() const noexcept { return reviter(*last - 1); }
constexpr reviter rend() const noexcept { return reviter(*first - 1); }
};
/**
* @title Range
*/
#line 2 "/Users/kodamankod/Desktop/cpp_programming/Library/algebraic/modular.cpp"
#line 2 "/Users/kodamankod/Desktop/cpp_programming/Library/algebraic/mod_inv.cpp"
#line 4 "/Users/kodamankod/Desktop/cpp_programming/Library/algebraic/mod_inv.cpp"
#include <cstdint>
constexpr std::pair<int64_t, int64_t> mod_inv(int64_t a, int64_t b) {
if ((a %= b) == 0) return { b, 0 };
int64_t s = b, t = (a < 0 ? a + b : a);
int64_t m0 = 0, m1 = 1, tmp = 0;
while (t > 0) {
const auto u = s / t;
s -= t * u; m0 -= m1 * u;
tmp = s; s = t; t = tmp; tmp = m0; m0 = m1; m1 = tmp;
}
return { s, (m0 < 0 ? m0 + b / s : m0) };
}
/**
* @title Extended GCD
*/
#line 4 "/Users/kodamankod/Desktop/cpp_programming/Library/algebraic/modular.cpp"
#line 8 "/Users/kodamankod/Desktop/cpp_programming/Library/algebraic/modular.cpp"
#include <type_traits>
template <class Modulus>
class modular {
public:
using value_type = uint32_t;
using cover_type = uint64_t;
static constexpr uint32_t mod() { return Modulus::mod(); }
template <class T>
static constexpr value_type normalize(T value_) noexcept {
if (value_ < 0) {
value_ = -value_;
value_ %= mod();
if (value_ == 0) return 0;
return mod() - value_;
}
return value_ % mod();
}
private:
value_type value;
template <bool IsPrime, std::enable_if_t<IsPrime>* = nullptr>
constexpr modular inverse_helper() const noexcept { return power(*this, mod() - 2); }
template <bool IsPrime, std::enable_if_t<!IsPrime>* = nullptr>
constexpr modular inverse_helper() const noexcept {
const auto tmp = mod_inv(value, mod());
assert(tmp.first == 1);
return modular(tmp.second);
}
public:
constexpr modular() noexcept : value(0) { }
template <class T>
explicit constexpr modular(T value_) noexcept : value(normalize(value_)) { }
template <class T>
explicit constexpr operator T() const noexcept { return static_cast<T>(value); }
constexpr value_type get() const noexcept { return value; }
constexpr value_type &extract() noexcept { return value; }
constexpr modular operator - () const noexcept { return modular(mod() - value); }
constexpr modular operator ~ () const noexcept { return inverse(*this); }
constexpr modular operator + (const modular &rhs) const noexcept { return modular(*this) += rhs; }
constexpr modular& operator += (const modular &rhs) noexcept {
if ((value += rhs.value) >= mod()) value -= mod();
return *this;
}
constexpr modular operator - (const modular &rhs) const noexcept { return modular(*this) -= rhs; }
constexpr modular& operator -= (const modular &rhs) noexcept {
if ((value += mod() - rhs.value) >= mod()) value -= mod();
return *this;
}
constexpr modular operator * (const modular &rhs) const noexcept { return modular(*this) *= rhs; }
constexpr modular& operator *= (const modular &rhs) noexcept {
value = (cover_type) value * rhs.value % mod();
return *this;
}
constexpr modular operator / (const modular &rhs) const noexcept { return modular(*this) /= rhs; }
constexpr modular& operator /= (const modular &rhs) noexcept { return (*this) *= inverse(rhs); }
constexpr bool zero() const noexcept { return value == 0; }
constexpr bool operator == (const modular &rhs) const noexcept { return value == rhs.value; }
constexpr bool operator != (const modular &rhs) const noexcept { return value != rhs.value; }
friend std::ostream& operator << (std::ostream &stream, const modular &rhs) { return stream << rhs.value; }
friend constexpr modular inverse(const modular &val) noexcept { return val.inverse_helper<Modulus::is_prime>(); }
friend constexpr modular power(modular val, cover_type exp) noexcept {
modular res(1);
for (; exp > 0; exp >>= 1, val *= val) if (exp & 1) res *= val;
return res;
}
};
template <uint32_t Mod, bool IsPrime = true>
struct static_modulus {
static constexpr uint32_t mod() noexcept { return Mod; }
static constexpr bool is_prime = IsPrime;
};
template <uint32_t Id = 0, bool IsPrime = false>
struct dynamic_modulus {
static uint32_t &mod() noexcept { static uint32_t val = 0; return val; }
static constexpr bool is_prime = IsPrime;
};
template <uint32_t Mod, bool IsPrime = true>
using mint32_t = modular<static_modulus<Mod, IsPrime>>;
using rmint32_t = modular<dynamic_modulus<>>;
/*
* @title Modint
*/
#line 16 "main.cpp"
using i32 = std::int32_t;
using i64 = std::int64_t;
using u32 = std::uint32_t;
using u64 = std::uint64_t;
using isize = std::ptrdiff_t;
using usize = std::size_t;
constexpr i32 inf32 = (u32) ~0 >> 2;
constexpr i64 inf64 = (u64) ~0 >> 2;
template <class T>
using Vec = std::vector<T>;
using Fp = mint32_t<1000000007>;
int main() {
usize N;
u32 L;
std::cin >> N >> L;
Vec<u32> A(N);
for (auto &x: A) {
std::cin >> x;
}
if (N == 1) {
std::cout << 1 << '\n';
return 0;
}
std::sort(A.begin(), A.end());
Vec<Vec<std::array<Fp, 3>>> dp(N + 1, Vec<std::array<Fp, 3>>(L + 1));
dp[0][0][0] = Fp(1);
for (auto i: range(0, N)) {
const auto cost = (i == 0 ? 0 : A[i] - A[i - 1]);
Vec<Vec<std::array<Fp, 3>>> next(N + 1, Vec<std::array<Fp, 3>>(L + 1));
for (auto j: range(0, N + 1)) {
for (auto k: range(0, L + 1)) {
for (auto l: range(0, 3)) {
const auto val = dp[j][k][l];
if (val.zero()) {
continue;
}
const auto nk = k + (2 * j - l) * cost;
if (nk > L) {
continue;
}
if (l < 2) {
if (j > 0) {
next[j][nk][l + 1] += val * Fp(2 - l);
}
if (j < N) {
next[j + 1][nk][l + 1] += val * Fp(2 - l);
}
}
if (j > 0) {
next[j][nk][l] += val * Fp(2 * j - l);
}
if (j > 1) {
next[j - 1][nk][l] += val * Fp(j - 1);
}
if (j < N) {
next[j + 1][nk][l] += val * Fp(j + 1 - l);
}
}
}
}
dp = std::move(next);
}
Fp ans;
for (auto i: range(0, L + 1)) {
ans += dp[1][i][2];
}
std::cout << ans << '\n';
return 0;
}
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
1 ms |
364 KB |
Output is correct |
2 |
Correct |
1 ms |
364 KB |
Output is correct |
3 |
Correct |
0 ms |
364 KB |
Output is correct |
4 |
Correct |
0 ms |
364 KB |
Output is correct |
5 |
Correct |
1 ms |
492 KB |
Output is correct |
6 |
Correct |
1 ms |
492 KB |
Output is correct |
7 |
Correct |
1 ms |
364 KB |
Output is correct |
8 |
Correct |
0 ms |
364 KB |
Output is correct |
9 |
Correct |
1 ms |
492 KB |
Output is correct |
10 |
Correct |
1 ms |
364 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
1 ms |
364 KB |
Output is correct |
2 |
Correct |
1 ms |
364 KB |
Output is correct |
3 |
Correct |
1 ms |
364 KB |
Output is correct |
4 |
Correct |
1 ms |
364 KB |
Output is correct |
5 |
Correct |
1 ms |
364 KB |
Output is correct |
6 |
Correct |
1 ms |
364 KB |
Output is correct |
7 |
Correct |
1 ms |
364 KB |
Output is correct |
8 |
Correct |
1 ms |
364 KB |
Output is correct |
9 |
Correct |
1 ms |
364 KB |
Output is correct |
10 |
Correct |
1 ms |
364 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
1 ms |
364 KB |
Output is correct |
2 |
Correct |
1 ms |
364 KB |
Output is correct |
3 |
Correct |
0 ms |
364 KB |
Output is correct |
4 |
Correct |
0 ms |
364 KB |
Output is correct |
5 |
Correct |
1 ms |
492 KB |
Output is correct |
6 |
Correct |
1 ms |
492 KB |
Output is correct |
7 |
Correct |
1 ms |
364 KB |
Output is correct |
8 |
Correct |
0 ms |
364 KB |
Output is correct |
9 |
Correct |
1 ms |
492 KB |
Output is correct |
10 |
Correct |
1 ms |
364 KB |
Output is correct |
11 |
Correct |
1 ms |
364 KB |
Output is correct |
12 |
Correct |
1 ms |
364 KB |
Output is correct |
13 |
Correct |
1 ms |
364 KB |
Output is correct |
14 |
Correct |
1 ms |
364 KB |
Output is correct |
15 |
Correct |
1 ms |
364 KB |
Output is correct |
16 |
Correct |
1 ms |
364 KB |
Output is correct |
17 |
Correct |
1 ms |
364 KB |
Output is correct |
18 |
Correct |
1 ms |
364 KB |
Output is correct |
19 |
Correct |
1 ms |
364 KB |
Output is correct |
20 |
Correct |
1 ms |
364 KB |
Output is correct |
21 |
Correct |
1 ms |
364 KB |
Output is correct |
22 |
Correct |
64 ms |
2000 KB |
Output is correct |
23 |
Correct |
75 ms |
2904 KB |
Output is correct |
24 |
Correct |
61 ms |
2148 KB |
Output is correct |
25 |
Correct |
78 ms |
2864 KB |
Output is correct |
26 |
Correct |
64 ms |
2392 KB |
Output is correct |
27 |
Correct |
22 ms |
964 KB |
Output is correct |
28 |
Correct |
29 ms |
1092 KB |
Output is correct |
29 |
Correct |
54 ms |
1744 KB |
Output is correct |
30 |
Correct |
78 ms |
2860 KB |
Output is correct |