Submission #343076

# Submission time Handle Problem Language Result Execution time Memory
343076 2021-01-03T11:57:37 Z KoD Skyscraper (JOI16_skyscraper) C++17
100 / 100
78 ms 2904 KB
#line 1 "main.cpp"

/**
 * @title Template
 */

#include <iostream>
#include <algorithm>
#include <utility>
#include <numeric>
#include <vector>
#include <array>
#include <cassert>

#line 2 "/Users/kodamankod/Desktop/cpp_programming/Library/other/range.cpp"

#line 4 "/Users/kodamankod/Desktop/cpp_programming/Library/other/range.cpp"

class range {
  struct iter {
    std::size_t itr;
    constexpr iter(std::size_t pos) noexcept: itr(pos) { }
    constexpr void operator ++ () noexcept { ++itr; }
    constexpr bool operator != (iter other) const noexcept { return itr != other.itr; }
    constexpr std::size_t operator * () const noexcept { return itr; }
  };

  struct reviter {
    std::size_t itr;
    constexpr reviter(std::size_t pos) noexcept: itr(pos) { }
    constexpr void operator ++ () noexcept { --itr; }
    constexpr bool operator != (reviter other) const noexcept { return itr != other.itr; }
    constexpr std::size_t operator * () const noexcept { return itr; }
  };

  const iter first, last;

public:
  constexpr range(std::size_t first, std::size_t last) noexcept: first(first), last(std::max(first, last)) { }
  constexpr iter begin() const noexcept { return first; }
  constexpr iter end() const noexcept { return last; }
  constexpr reviter rbegin() const noexcept { return reviter(*last - 1); } 
  constexpr reviter rend() const noexcept { return reviter(*first - 1); } 
};

/**
 * @title Range
 */
#line 2 "/Users/kodamankod/Desktop/cpp_programming/Library/algebraic/modular.cpp"

#line 2 "/Users/kodamankod/Desktop/cpp_programming/Library/algebraic/mod_inv.cpp"

#line 4 "/Users/kodamankod/Desktop/cpp_programming/Library/algebraic/mod_inv.cpp"
#include <cstdint>

constexpr std::pair<int64_t, int64_t> mod_inv(int64_t a, int64_t b) {
  if ((a %= b) == 0) return { b, 0 };
  int64_t s = b, t = (a < 0 ? a + b : a);
  int64_t m0 = 0, m1 = 1, tmp = 0;
  while (t > 0) {
    const auto u = s / t;
    s -= t * u; m0 -= m1 * u;
    tmp = s; s = t; t = tmp; tmp = m0; m0 = m1; m1 = tmp;
  }
  return { s, (m0 < 0 ? m0 + b / s : m0) };
}

/**
 * @title Extended GCD
 */
#line 4 "/Users/kodamankod/Desktop/cpp_programming/Library/algebraic/modular.cpp"

#line 8 "/Users/kodamankod/Desktop/cpp_programming/Library/algebraic/modular.cpp"
#include <type_traits>

template <class Modulus>
class modular {
public:
  using value_type = uint32_t;
  using cover_type = uint64_t;
 
  static constexpr uint32_t mod() { return Modulus::mod(); }
  template <class T>
  static constexpr value_type normalize(T value_) noexcept {
    if (value_ < 0) {
      value_ = -value_;
      value_ %= mod();
      if (value_ == 0) return 0;
      return mod() - value_;
    }
    return value_ % mod();
  }

private:
  value_type value;

  template <bool IsPrime, std::enable_if_t<IsPrime>* = nullptr>
  constexpr modular inverse_helper() const noexcept { return power(*this, mod() - 2); }
  template <bool IsPrime, std::enable_if_t<!IsPrime>* = nullptr>
  constexpr modular inverse_helper() const noexcept {
    const auto tmp = mod_inv(value, mod());
    assert(tmp.first == 1);
    return modular(tmp.second);
  }

public:
  constexpr modular() noexcept : value(0) { }
  template <class T>
  explicit constexpr modular(T value_) noexcept : value(normalize(value_)) { }
  template <class T>
  explicit constexpr operator T() const noexcept { return static_cast<T>(value); }
 
  constexpr value_type get() const noexcept { return value; }
  constexpr value_type &extract() noexcept { return value; }
  constexpr modular operator - () const noexcept { return modular(mod() - value); }
  constexpr modular operator ~ () const noexcept { return inverse(*this); }
 
  constexpr modular operator + (const modular &rhs) const noexcept { return modular(*this) += rhs; }
  constexpr modular& operator += (const modular &rhs) noexcept { 
    if ((value += rhs.value) >= mod()) value -= mod(); 
    return *this; 
  }
 
  constexpr modular operator - (const modular &rhs) const noexcept { return modular(*this) -= rhs; }
  constexpr modular& operator -= (const modular &rhs) noexcept { 
    if ((value += mod() - rhs.value) >= mod()) value -= mod(); 
    return *this; 
  }
 
  constexpr modular operator * (const modular &rhs) const noexcept { return modular(*this) *= rhs; }
  constexpr modular& operator *= (const modular &rhs) noexcept { 
    value = (cover_type) value * rhs.value % mod();
    return *this;
  }
 
  constexpr modular operator / (const modular &rhs) const noexcept { return modular(*this) /= rhs; }
  constexpr modular& operator /= (const modular &rhs) noexcept { return (*this) *= inverse(rhs); }
 
  constexpr bool zero() const noexcept { return value == 0; }
  constexpr bool operator == (const modular &rhs) const noexcept { return value == rhs.value; }
  constexpr bool operator != (const modular &rhs) const noexcept { return value != rhs.value; }
 
  friend std::ostream& operator << (std::ostream &stream, const modular &rhs) { return stream << rhs.value; }
  friend constexpr modular inverse(const modular &val) noexcept { return val.inverse_helper<Modulus::is_prime>(); }
  friend constexpr modular power(modular val, cover_type exp) noexcept { 
    modular res(1);
    for (; exp > 0; exp >>= 1, val *= val) if (exp & 1) res *= val;
    return res;
  }
 
};
 
template <uint32_t Mod, bool IsPrime = true>
struct static_modulus { 
  static constexpr uint32_t mod() noexcept { return Mod; } 
  static constexpr bool is_prime = IsPrime;
};

template <uint32_t Id = 0, bool IsPrime = false>
struct dynamic_modulus {
  static uint32_t &mod() noexcept { static uint32_t val = 0; return val; }
  static constexpr bool is_prime = IsPrime;
};

template <uint32_t Mod, bool IsPrime = true>
using mint32_t = modular<static_modulus<Mod, IsPrime>>;
using rmint32_t = modular<dynamic_modulus<>>;

/*
 * @title Modint
 */
#line 16 "main.cpp"

using i32 = std::int32_t;
using i64 = std::int64_t;
using u32 = std::uint32_t;
using u64 = std::uint64_t;
using isize = std::ptrdiff_t;
using usize = std::size_t;

constexpr i32 inf32 = (u32) ~0 >> 2;
constexpr i64 inf64 = (u64) ~0 >> 2;

template <class T>
using Vec = std::vector<T>;

using Fp = mint32_t<1000000007>;

int main() {
  usize N;
  u32 L;
  std::cin >> N >> L;
  Vec<u32> A(N);
  for (auto &x: A) {
    std::cin >> x;
  }
  if (N == 1) {
    std::cout << 1 << '\n';
    return 0;
  }
  std::sort(A.begin(), A.end());
  Vec<Vec<std::array<Fp, 3>>> dp(N + 1, Vec<std::array<Fp, 3>>(L + 1));
  dp[0][0][0] = Fp(1);
  for (auto i: range(0, N)) {
    const auto cost = (i == 0 ? 0 : A[i] - A[i - 1]);
    Vec<Vec<std::array<Fp, 3>>> next(N + 1, Vec<std::array<Fp, 3>>(L + 1));
    for (auto j: range(0, N + 1)) {
      for (auto k: range(0, L + 1)) {
        for (auto l: range(0, 3)) {
          const auto val = dp[j][k][l];
          if (val.zero()) {
            continue;
          }
          const auto nk = k + (2 * j - l) * cost;
          if (nk > L) {
            continue;
          }
          if (l < 2) {
            if (j > 0) {
              next[j][nk][l + 1] += val * Fp(2 - l);
            }
            if (j < N) {
              next[j + 1][nk][l + 1] += val * Fp(2 - l);
            }
          }
          if (j > 0) {
            next[j][nk][l] += val * Fp(2 * j - l);
          }
          if (j > 1) {
            next[j - 1][nk][l] += val * Fp(j - 1);
          }
          if (j < N) {
            next[j + 1][nk][l] += val * Fp(j + 1 - l);
          }
        }
      }
    }
    dp = std::move(next);
  }
  Fp ans;
  for (auto i: range(0, L + 1)) {
    ans += dp[1][i][2];
  }
  std::cout << ans << '\n';
  return 0;
}
# Verdict Execution time Memory Grader output
1 Correct 1 ms 364 KB Output is correct
2 Correct 1 ms 364 KB Output is correct
3 Correct 0 ms 364 KB Output is correct
4 Correct 0 ms 364 KB Output is correct
5 Correct 1 ms 492 KB Output is correct
6 Correct 1 ms 492 KB Output is correct
7 Correct 1 ms 364 KB Output is correct
8 Correct 0 ms 364 KB Output is correct
9 Correct 1 ms 492 KB Output is correct
10 Correct 1 ms 364 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 364 KB Output is correct
2 Correct 1 ms 364 KB Output is correct
3 Correct 1 ms 364 KB Output is correct
4 Correct 1 ms 364 KB Output is correct
5 Correct 1 ms 364 KB Output is correct
6 Correct 1 ms 364 KB Output is correct
7 Correct 1 ms 364 KB Output is correct
8 Correct 1 ms 364 KB Output is correct
9 Correct 1 ms 364 KB Output is correct
10 Correct 1 ms 364 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 364 KB Output is correct
2 Correct 1 ms 364 KB Output is correct
3 Correct 0 ms 364 KB Output is correct
4 Correct 0 ms 364 KB Output is correct
5 Correct 1 ms 492 KB Output is correct
6 Correct 1 ms 492 KB Output is correct
7 Correct 1 ms 364 KB Output is correct
8 Correct 0 ms 364 KB Output is correct
9 Correct 1 ms 492 KB Output is correct
10 Correct 1 ms 364 KB Output is correct
11 Correct 1 ms 364 KB Output is correct
12 Correct 1 ms 364 KB Output is correct
13 Correct 1 ms 364 KB Output is correct
14 Correct 1 ms 364 KB Output is correct
15 Correct 1 ms 364 KB Output is correct
16 Correct 1 ms 364 KB Output is correct
17 Correct 1 ms 364 KB Output is correct
18 Correct 1 ms 364 KB Output is correct
19 Correct 1 ms 364 KB Output is correct
20 Correct 1 ms 364 KB Output is correct
21 Correct 1 ms 364 KB Output is correct
22 Correct 64 ms 2000 KB Output is correct
23 Correct 75 ms 2904 KB Output is correct
24 Correct 61 ms 2148 KB Output is correct
25 Correct 78 ms 2864 KB Output is correct
26 Correct 64 ms 2392 KB Output is correct
27 Correct 22 ms 964 KB Output is correct
28 Correct 29 ms 1092 KB Output is correct
29 Correct 54 ms 1744 KB Output is correct
30 Correct 78 ms 2860 KB Output is correct