Submission #341687

# Submission time Handle Problem Language Result Execution time Memory
341687 2020-12-30T12:20:26 Z KoD Bulldozer (JOI17_bulldozer) C++17
20 / 100
2000 ms 158172 KB
#line 1 "main.cpp"

/**
 * @title Template
 */

#include <iostream>
#include <algorithm>
#include <utility>
#include <numeric>
#include <vector>
#include <array>
#include <cassert>
#include <map>

#line 2 "/Users/kodamankod/Desktop/cpp_programming/Library/other/range.cpp"

#line 4 "/Users/kodamankod/Desktop/cpp_programming/Library/other/range.cpp"

class range {
  struct iter {
    std::size_t itr;
    constexpr iter(std::size_t pos) noexcept: itr(pos) { }
    constexpr void operator ++ () noexcept { ++itr; }
    constexpr bool operator != (iter other) const noexcept { return itr != other.itr; }
    constexpr std::size_t operator * () const noexcept { return itr; }
  };

  struct reviter {
    std::size_t itr;
    constexpr reviter(std::size_t pos) noexcept: itr(pos) { }
    constexpr void operator ++ () noexcept { --itr; }
    constexpr bool operator != (reviter other) const noexcept { return itr != other.itr; }
    constexpr std::size_t operator * () const noexcept { return itr; }
  };

  const iter first, last;

public:
  constexpr range(std::size_t first, std::size_t last) noexcept: first(first), last(std::max(first, last)) { }
  constexpr iter begin() const noexcept { return first; }
  constexpr iter end() const noexcept { return last; }
  constexpr reviter rbegin() const noexcept { return reviter(*last - 1); } 
  constexpr reviter rend() const noexcept { return reviter(*first - 1); } 
};

/**
 * @title Range
 */
#line 2 "/Users/kodamankod/Desktop/cpp_programming/Library/container/segment_tree.cpp"

#line 2 "/Users/kodamankod/Desktop/cpp_programming/Library/other/monoid.cpp"

#include <type_traits>
#line 5 "/Users/kodamankod/Desktop/cpp_programming/Library/other/monoid.cpp"
#include <stdexcept>

template <class T, class = void>
class has_identity: public std::false_type { };

template <class T>
class has_identity<T, typename std::conditional<false, decltype(T::identity()), void>::type>: public std::true_type { };

template <class T>
constexpr typename std::enable_if<has_identity<T>::value, typename T::type>::type empty_exception() {
  return T::identity();
}
template <class T>
[[noreturn]] typename std::enable_if<!has_identity<T>::value, typename T::type>::type empty_exception() {
  throw std::runtime_error("type T has no identity");
}

template <class T, bool HasIdentity>
class fixed_monoid_impl: public T {
public:
  using type = typename T::type;

  static constexpr type convert(const type &value) { return value; }
  static constexpr type revert(const type &value) { return value; }

  template <class Mapping, class Value, class... Args>
  static constexpr void operate(Mapping &&func, Value &value, const type &op, Args&&... args) {
    value = func(value, op, std::forward<Args>(args)...);
  }
  template <class Constraint>
  static constexpr bool satisfies(Constraint &&func, const type &value) {
    return func(value);
  }
};

template <class T>
class fixed_monoid_impl<T, false> {
public:
  class type {
  public:
    typename T::type value;
    bool state;
  
    explicit constexpr type(): value(typename T::type { }), state(false) { }
    explicit constexpr type(const typename T::type &value): value(value), state(true) { }
  };

  static constexpr type convert(const typename T::type &value) { return type(value); }
  static constexpr typename T::type revert(const type &value) { 
    if (!value.state) throw std::runtime_error("attempted to revert identity to non-monoid"); 
    return value.value; 
  }

  static constexpr type identity() { return type(); }
  static constexpr type operation(const type &v1, const type &v2) {
    if (!v1.state) return v2;
    if (!v2.state) return v1;
    return type(T::operation(v1.value, v2.value));
  }

  template <class Mapping, class Value, class... Args>
  static constexpr void operate(Mapping &&func, Value &value, const type &op, Args&&... args) {
    if (!op.state) return;
    value = func(value, op.value, std::forward<Args>(args)...);
  }
  template <class Constraint>
  static constexpr bool satisfies(Constraint &&func, const type &value) {
    if (!value.state) return false;
    return func(value.value);
  }
};

template <class T>
using fixed_monoid = fixed_monoid_impl<T, has_identity<T>::value>;

/**
 * @title Monoid Utility
 */
#line 2 "/Users/kodamankod/Desktop/cpp_programming/Library/other/bit_operation.cpp"

#include <cstddef>
#include <cstdint>

constexpr size_t bit_ppc(const uint64_t x) { return __builtin_popcountll(x); }
constexpr size_t bit_ctzr(const uint64_t x) { return x == 0 ? 64 : __builtin_ctzll(x); }
constexpr size_t bit_ctzl(const uint64_t x) { return x == 0 ? 64 : __builtin_clzll(x); }
constexpr size_t bit_width(const uint64_t x) { return 64 - bit_ctzl(x); }
constexpr uint64_t bit_msb(const uint64_t x) { return x == 0 ? 0 : uint64_t(1) << (bit_width(x) - 1); }
constexpr uint64_t bit_lsb(const uint64_t x) { return x & (-x); }
constexpr uint64_t bit_cover(const uint64_t x) { return x == 0 ? 0 : bit_msb(2 * x - 1); }

constexpr uint64_t bit_rev(uint64_t x) {
  x = ((x >> 1) & 0x5555555555555555) | ((x & 0x5555555555555555) << 1);
  x = ((x >> 2) & 0x3333333333333333) | ((x & 0x3333333333333333) << 2);
  x = ((x >> 4) & 0x0F0F0F0F0F0F0F0F) | ((x & 0x0F0F0F0F0F0F0F0F) << 4);
  x = ((x >> 8) & 0x00FF00FF00FF00FF) | ((x & 0x00FF00FF00FF00FF) << 8);
  x = ((x >> 16) & 0x0000FFFF0000FFFF) | ((x & 0x0000FFFF0000FFFF) << 16);
  x = (x >> 32) | (x << 32);
  return x;
}

/**
 * @title Bit Operations
 */
#line 5 "/Users/kodamankod/Desktop/cpp_programming/Library/container/segment_tree.cpp"

#line 8 "/Users/kodamankod/Desktop/cpp_programming/Library/container/segment_tree.cpp"
#include <iterator>
#line 11 "/Users/kodamankod/Desktop/cpp_programming/Library/container/segment_tree.cpp"
#include <type_traits>
#line 13 "/Users/kodamankod/Desktop/cpp_programming/Library/container/segment_tree.cpp"

template <class Monoid>
class segment_tree {
public:
  using structure    = Monoid;
  using value_monoid = typename Monoid::value_structure;
  using value_type   = typename Monoid::value_structure::type;
  using size_type    = size_t;

private:
  using fixed_value_monoid = fixed_monoid<value_monoid>;
  using fixed_value_type   = typename fixed_value_monoid::type;

  std::vector<fixed_value_type> M_tree;

  void M_fix_change(const size_type index) {
    M_tree[index] = fixed_value_monoid::operation(M_tree[index << 1 | 0], M_tree[index << 1 | 1]);
  }

public:
  segment_tree() = default;
  explicit segment_tree(const size_type size) { initialize(size); }
  template <class InputIterator>
  explicit segment_tree(InputIterator first, InputIterator last) { construct(first, last); }

  void initialize(const size_type size) {
    clear();
    M_tree.assign(size << 1, fixed_value_monoid::identity());
  }

  template <class InputIterator>
  void construct(InputIterator first, InputIterator last) {
    clear();
    const size_type size = std::distance(first, last);
    M_tree.reserve(size << 1);
    M_tree.assign(size, fixed_value_monoid::identity());
    std::transform(first, last, std::back_inserter(M_tree), [&](const value_type &value) {
      return fixed_value_monoid::convert(value);
    });
    for (size_type index = size - 1; index != 0; --index) {
      M_fix_change(index);
    }
  }

  void assign(size_type index, const value_type &value) {
    assert(index < size());
    index += size();
    M_tree[index] = fixed_value_monoid::convert(value);
    while (index != 1) {
      index >>= 1;
      M_fix_change(index);
    } 
  }

  value_type at(const size_type index) const { 
    assert(index < size());
    return fixed_value_monoid::revert(M_tree[index + size()]);
  }

  value_type fold(size_type first, size_type last) const {
    assert(first <= last);
    assert(last <= size());
    first += size();
    last += size();
    fixed_value_type fold_l = fixed_value_monoid::identity();
    fixed_value_type fold_r = fixed_value_monoid::identity();
    while (first != last) {
      if (first & 1) {
        fold_l = fixed_value_monoid::operation(fold_l, M_tree[first]);
        ++first;
      }
      if (last & 1) {
        --last;
        fold_r = fixed_value_monoid::operation(M_tree[last], fold_r);      
      }
      first >>= 1;
      last >>= 1;
    }
    return fixed_value_monoid::revert(fixed_value_monoid::operation(fold_l, fold_r));
  }

  template <bool ToRight = true, class Constraint, std::enable_if_t<ToRight>* = nullptr> 
  size_type satisfies(const size_type left, Constraint &&func) const {
    assert(left <= size());
    if (fixed_value_monoid::satisfies(std::forward<Constraint>(func), 
      fixed_value_monoid::identity())) return left;
    size_type first = left + size();
    size_type last = 2 * size();
    const size_type last_c = last;
    fixed_value_type fold = fixed_value_monoid::identity();
    const auto try_merge = [&](const size_type index) {
      fixed_value_type tmp = fixed_value_monoid::operation(fold, M_tree[index]);
      if (fixed_value_monoid::satisfies(std::forward<Constraint>(func), tmp)) return true;
      fold = std::move(tmp);
      return false;
    };
    const auto subtree = [&](size_type index) {
      while (index < size()) {
        index <<= 1;
        if (!try_merge(index)) ++index;
      }
      return index - size() + 1;
    };
    size_type story = 0;
    while (first < last) {
      if (first & 1) {
        if (try_merge(first)) return subtree(first);
        ++first;
      }
      first >>= 1;
      last >>= 1;
      ++story;
    }
    while (story--) {
      last = last_c >> story;
      if (last & 1) {
        --last;
        if (try_merge(last)) return subtree(last);
      }
    }
    return size() + 1;
  }

  template <bool ToRight = true, class Constraint, std::enable_if_t<!ToRight>* = nullptr> 
  size_type satisfies(const size_type right, Constraint &&func) const {
    assert(right <= size());
    if (fixed_value_monoid::satisfies(std::forward<Constraint>(func), 
      fixed_value_monoid::identity())) return right;
    size_type first = size();
    size_type last = right + size();
    const size_type first_c = first;
    fixed_value_type fold = fixed_value_monoid::identity();
    const auto try_merge = [&](const size_type index) {
      fixed_value_type tmp = fixed_value_monoid::operation(M_tree[index], fold);
      if (fixed_value_monoid::satisfies(std::forward<Constraint>(func), tmp)) return true;
      fold = std::move(tmp);
      return false;
    };
    const auto subtree = [&](size_type index) {
      while (index < size()) {
        index <<= 1;
        if (try_merge(index + 1)) ++index;
      }
      return index - size();
    };
    size_type story = 0;
    while (first < last) {
      if (first & 1) ++first;
      if (last & 1) {
        --last;
        if (try_merge(last)) return subtree(last);
      }
      first >>= 1;
      last >>= 1;
      ++story;
    }
    const size_type cover = bit_cover(first_c);
    while (story--) {
      first = (cover >> story) - ((cover - first_c) >> story);
      if (first & 1) {
        if (try_merge(first)) return subtree(first);
      }
    }
    return size_type(-1);
  }

  void clear() {
    M_tree.clear();
    M_tree.shrink_to_fit();
  }
  size_type size() const { 
    return M_tree.size() >> 1;
  }
};

/**
 * @title Segment Tree
 */
#line 17 "main.cpp"

using i32 = std::int32_t;
using i64 = std::int64_t;
using u32 = std::uint32_t;
using u64 = std::uint64_t;
using isize = std::ptrdiff_t;
using usize = std::size_t;

constexpr i32 inf32 = (u32) ~0 >> 2;
constexpr i64 inf64 = (u64) ~0 >> 2;

struct st_monoid {
  struct value_structure {
    struct type {
      i64 max, min, dif;
      explicit type(const i64 value): max(value), min(value), dif(0) { }
      explicit type(const i64 max, const i64 min, const i64 dif): max(max), min(min), dif(dif) { }
    };
    static type identity() { return type(-inf64, inf64, -inf64); }
    static type operation(const type& v1, const type& v2) { 
      return type(std::max(v1.max, v2.max), std::min(v1.min, v2.min), std::max({ v2.max - v1.min, v1.dif, v2.dif}));
    }
  };
};

template <class T>
using Vec = std::vector<T>;

struct Frac {
  i64 a, b;

  Frac(const i64 x, const i64 y): a(x), b(y) {
    if (b < 0) {
      a = -a;
      b = -b;
    }
  }
  
  bool operator < (const Frac &other) const {
    return a * other.b < other.a * b;
  }
  bool operator > (const Frac &other) const {
    return a * other.b > other.a * b;
  }
  bool operator == (const Frac &other) const {
    return a * other.b == other.a * b;
  }
};

constexpr i64 INF = 2000000005;

int main() {
  std::ios_base::sync_with_stdio(false);
  std::cin.tie(nullptr);
  usize N;
  std::cin >> N;
  Vec<i32> X(N), Y(N), W(N);
  for (auto i: range(0, N)) {
    std::cin >> X[i] >> Y[i] >> W[i];
  }
  std::map<Frac, Vec<std::pair<usize, usize>>> query;
  for (auto i: range(0, N)) {
    for (auto j: range(0, i)) {
      if (X[i] != X[j]) {
        query[Frac(Y[i] - Y[j], X[i] - X[j])].emplace_back(i, j);
      }
    }
  }
  Vec<usize> order(N);
  std::iota(order.begin(), order.end(), (usize) 0);
  std::sort(order.begin(), order.end(), [&](const usize i, const usize j) {
    return X[i] < X[j] || (X[i] == X[j] && Y[i] < Y[j]);
  });
  Vec<i64> S(N + 1);
  for (auto i: range(0, N)) {
    S[i + 1] = S[i] + W[order[i]];
  }
  using type = typename st_monoid::value_structure::type;
  segment_tree<st_monoid> seg(N + 1);
  for (auto i: range(0, N + 1)) {
    seg.assign(i, type(S[i]));
  }
  i64 ans = seg.fold(0, N + 1).dif;
  Vec<usize> inv(N);
  for (auto i: range(0, N)) {
    inv[order[i]] = i;
  }
  for (const auto [_, qs]: query) {
    for (auto [i, j]: qs) {
      if (inv[i] > inv[j]) {
        std::swap(i, j);
      } 
      S[inv[i] + 1] = S[inv[i]] + W[j];
      S[inv[i] + 2] = S[inv[i] + 1] + W[i];
      seg.assign(inv[i] + 1, type(S[inv[i] + 1]));
      seg.assign(inv[i] + 2, type(S[inv[i] + 2]));
      std::swap(inv[i], inv[j]);
    }
    ans = std::max(ans, seg.fold(0, N + 1).dif);
  }
  std::cout << ans << '\n';
  return 0;
}
# Verdict Execution time Memory Grader output
1 Incorrect 1 ms 492 KB Output isn't correct
2 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 4 ms 876 KB Output is correct
2 Correct 4 ms 876 KB Output is correct
3 Correct 3 ms 876 KB Output is correct
4 Correct 3 ms 876 KB Output is correct
5 Correct 3 ms 876 KB Output is correct
6 Correct 3 ms 876 KB Output is correct
7 Correct 3 ms 876 KB Output is correct
8 Correct 4 ms 876 KB Output is correct
9 Correct 4 ms 876 KB Output is correct
10 Correct 3 ms 876 KB Output is correct
11 Correct 1 ms 364 KB Output is correct
12 Correct 0 ms 364 KB Output is correct
13 Correct 1 ms 364 KB Output is correct
14 Correct 1 ms 364 KB Output is correct
15 Correct 1 ms 384 KB Output is correct
16 Correct 1 ms 364 KB Output is correct
17 Correct 1 ms 364 KB Output is correct
18 Correct 1 ms 364 KB Output is correct
19 Correct 1 ms 364 KB Output is correct
20 Correct 0 ms 364 KB Output is correct
21 Correct 3 ms 876 KB Output is correct
22 Correct 3 ms 876 KB Output is correct
23 Correct 3 ms 876 KB Output is correct
24 Correct 3 ms 876 KB Output is correct
25 Correct 5 ms 876 KB Output is correct
26 Correct 3 ms 876 KB Output is correct
27 Correct 3 ms 876 KB Output is correct
28 Correct 3 ms 876 KB Output is correct
29 Correct 3 ms 876 KB Output is correct
30 Correct 4 ms 876 KB Output is correct
31 Correct 3 ms 876 KB Output is correct
32 Correct 3 ms 876 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 4 ms 876 KB Output is correct
2 Correct 4 ms 876 KB Output is correct
3 Correct 3 ms 876 KB Output is correct
4 Correct 3 ms 876 KB Output is correct
5 Correct 3 ms 876 KB Output is correct
6 Correct 3 ms 876 KB Output is correct
7 Correct 3 ms 876 KB Output is correct
8 Correct 4 ms 876 KB Output is correct
9 Correct 4 ms 876 KB Output is correct
10 Correct 3 ms 876 KB Output is correct
11 Correct 1 ms 364 KB Output is correct
12 Correct 0 ms 364 KB Output is correct
13 Correct 1 ms 364 KB Output is correct
14 Correct 1 ms 364 KB Output is correct
15 Correct 1 ms 384 KB Output is correct
16 Correct 1 ms 364 KB Output is correct
17 Correct 1 ms 364 KB Output is correct
18 Correct 1 ms 364 KB Output is correct
19 Correct 1 ms 364 KB Output is correct
20 Correct 0 ms 364 KB Output is correct
21 Correct 3 ms 876 KB Output is correct
22 Correct 3 ms 876 KB Output is correct
23 Correct 3 ms 876 KB Output is correct
24 Correct 3 ms 876 KB Output is correct
25 Correct 5 ms 876 KB Output is correct
26 Correct 3 ms 876 KB Output is correct
27 Correct 3 ms 876 KB Output is correct
28 Correct 3 ms 876 KB Output is correct
29 Correct 3 ms 876 KB Output is correct
30 Correct 4 ms 876 KB Output is correct
31 Correct 3 ms 876 KB Output is correct
32 Correct 3 ms 876 KB Output is correct
33 Execution timed out 2101 ms 158172 KB Time limit exceeded
34 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 4 ms 876 KB Output is correct
2 Correct 4 ms 876 KB Output is correct
3 Correct 3 ms 876 KB Output is correct
4 Correct 3 ms 876 KB Output is correct
5 Correct 3 ms 876 KB Output is correct
6 Correct 3 ms 876 KB Output is correct
7 Correct 3 ms 876 KB Output is correct
8 Correct 4 ms 876 KB Output is correct
9 Correct 4 ms 876 KB Output is correct
10 Correct 3 ms 876 KB Output is correct
11 Correct 1 ms 364 KB Output is correct
12 Correct 0 ms 364 KB Output is correct
13 Correct 1 ms 364 KB Output is correct
14 Correct 1 ms 364 KB Output is correct
15 Correct 1 ms 384 KB Output is correct
16 Correct 1 ms 364 KB Output is correct
17 Correct 1 ms 364 KB Output is correct
18 Correct 1 ms 364 KB Output is correct
19 Correct 1 ms 364 KB Output is correct
20 Correct 0 ms 364 KB Output is correct
21 Correct 3 ms 876 KB Output is correct
22 Correct 3 ms 876 KB Output is correct
23 Correct 3 ms 876 KB Output is correct
24 Correct 3 ms 876 KB Output is correct
25 Correct 5 ms 876 KB Output is correct
26 Correct 3 ms 876 KB Output is correct
27 Correct 3 ms 876 KB Output is correct
28 Correct 3 ms 876 KB Output is correct
29 Correct 3 ms 876 KB Output is correct
30 Correct 4 ms 876 KB Output is correct
31 Correct 3 ms 876 KB Output is correct
32 Correct 3 ms 876 KB Output is correct
33 Execution timed out 2101 ms 158172 KB Time limit exceeded
34 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Incorrect 1 ms 492 KB Output isn't correct
2 Halted 0 ms 0 KB -